Show simple item record

Engineering Hierarchical Nanostructures by Elastocapillary Self‐Assembly

dc.contributor.authorDe volder, Michaëlen_US
dc.contributor.authorHart, A. Johnen_US
dc.date.accessioned2013-03-05T18:17:54Z
dc.date.available2014-04-02T15:08:07Zen_US
dc.date.issued2013-02-25en_US
dc.identifier.citationDe volder, Michaël ; Hart, A. John (2013). "Engineering Hierarchical Nanostructures by Elastocapillary Selfâ Assembly." Angewandte Chemie International Edition 52(9): 2412-2425. <http://hdl.handle.net/2027.42/96738>en_US
dc.identifier.issn1433-7851en_US
dc.identifier.issn1521-3773en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96738
dc.description.abstractSurfaces coated with nanoscale filaments such as silicon nanowires and carbon nanotubes are potentially compelling for high‐performance battery and capacitor electrodes, photovoltaics, electrical interconnects, substrates for engineered cell growth, dry adhesives, and other smart materials. However, many of these applications require a wet environment or involve wet processing during their synthesis. The capillary forces introduced by these wet environments can lead to undesirable aggregation of nanoscale filaments, but control of capillary forces can enable manipulation of the filaments into discrete aggregates and novel hierarchical structures. Recent studies suggest that the elastocapillary self‐assembly of nanofilaments can be a versatile and scalable means to build complex and robust surface architectures. To enable a wider understanding and use of elastocapillary self‐assembly as a fabrication technology, we give an overview of the underlying fundamentals and classify typical implementations and surface designs for nanowires, nanotubes, and nanopillars made from a wide variety of materials. Finally, we discuss exemplary applications and future opportunities to realize new engineered surfaces by the elastocapillary self‐assembly of nanofilaments. New insights in capillary interactions between nanofilaments have led to versatile and scalable methods to build complex structures that cannot be achieved by any other processing technique. Understanding the control of this process is conducive to the development of high‐performance battery and capacitor electrodes as well as photovoltaics, electrical interconnects, and other smart materials.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherCarbon Nanotubesen_US
dc.subject.otherHierarchical Nanostructuresen_US
dc.subject.otherSelf‐Assemblyen_US
dc.subject.otherSurfacesen_US
dc.subject.otherCapillaryen_US
dc.subject.otherFilamentsen_US
dc.titleEngineering Hierarchical Nanostructures by Elastocapillary Self‐Assemblyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, MI (USA)en_US
dc.contributor.affiliationotherimec and Department of Mechanical Engineering, KULeuven, Heverlee (Belgium)en_US
dc.contributor.affiliationotherimec and Department of Mechanical Engineering, KULeuven, Heverlee (Belgium)en_US
dc.contributor.affiliationotherSchool of Engineering and Applied Sciences, Harvard University, Cambridge, Ma (USA)en_US
dc.identifier.pmid23339106en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96738/1/2412_ftp.pdf
dc.identifier.doi10.1002/anie.201205944en_US
dc.identifier.sourceAngewandte Chemie International Editionen_US
dc.identifier.citedreferenceZ. Liu, N. Bajwa, L. Ci, S. H. Lee, S. Kar, P. M. Ajayan, et al., 10th International Interconnect Technology Conference 2007, pp. 201–203.en_US
dc.identifier.citedreferenceSee Ref.[30].en_US
dc.identifier.citedreferenceA. Kim, F. S. Ou, D. A. A. Ohlberg, M. Hu, R. S. Williams, Z. Li, J. Am. Chem. Soc. 2011, 133, 8234 – 8239.en_US
dc.identifier.citedreferenceG. Liu, J. Zhou, Y. Xiong, X. Zhang, Y. Tian, Nanotechnology 2011, 22, 305305.en_US
dc.identifier.citedreferenceM. De Volder, S. Tawfick, S. J. Park, D. Copic, A. J. Hart, TRANSDUCERS 2011–2011 16th International Solid‐State Sensors, Actuators and Microsystems Conference, 01, 2011.en_US
dc.identifier.citedreferenceS. Esconjauregui, M. Fouquet, B. C. Bayer, C. Ducati, R. Smajda, S. Hofmann, J. Robertson, ACS Nano 2010, 4, 7431 – 7436.en_US
dc.identifier.citedreferenceD. Wu, Q.‐D. Chen, B.‐B. Xu, J. Jiao, Y. Xu, H. Xia, H. B. Sun, Appl. Phys. Lett. 2009, 95, 091902.en_US
dc.identifier.citedreferenceF. Járai‐Szabó, E.‐A. Horvat, R. Vajtai, Z. Neda, Chem. Phys. Lett. 2011, 511, 378 – 383.en_US
dc.identifier.citedreferenceSee Ref. [22].en_US
dc.identifier.citedreferenceZ. Z. Zhao, S. H. Tawfick, S. J. Park, M. De Volder, A. J. Hart, W. Lu, Phys. Rev. E 2010, 82, 041605.en_US
dc.identifier.citedreferenceJ. Qu, Z. Zhao, X. Wang, J. Qiu, J. Mater. Chem. 2011, 21, 5967 – 5971.en_US
dc.identifier.citedreferenceS. H. Kang, N. Wu, A. Grinthal, J. Aizenberg, Phys. Rev. Lett. 2011, 107, 177802.en_US
dc.identifier.citedreferenceN. Chiodarelli, Y. Li, D. J. Cott, S. Mertens, N. Peys, M. Heyns, S. D. Gendt, G. Groeseneken, P. M. Vereecken, Microelectron. Eng. 2011, 88, 837 – 843.en_US
dc.identifier.citedreferenceT. Wang, S. Chen, D. Jiang, Y. Fu, K. Jeppson, L. Ye, J. Liu, IEEE Electron Device Lett. 2012, 33, 420 – 422.en_US
dc.identifier.citedreferenceM. De Volder, S. H. Tawfick, D. Copic, A. J. Hart, Soft Matter 2011, 7, 9844 – 9847.en_US
dc.identifier.citedreferenceM. De Volder, S. Tawfick, D. Copic, A. J. Hart, TRANSDUCERS 2011–2011 16th International Solid‐State Sensors, Actuators and Microsystems Conference, 01 2011.en_US
dc.identifier.citedreferenceH. Segawa, S. Yamaguchi, Y. Yamazaki, T. Yano, S. Shibata, H. Misawa, Appl. Phys. A 2006, 83, 447 – 451.en_US
dc.identifier.citedreferenceH. Segawa, Y. Yamazaki, T. Yano, S. Shibata, Mater. Sci. Eng. B 2008, 148, 43 – 47.en_US
dc.identifier.citedreferenceH. Segawa, Y. Yamazaki, S. Tachiki, T. Yano, S. Shibata, J. Colloid Interface Sci. 2008, 323, 187 – 190.en_US
dc.identifier.citedreferenceH. Segawa, S. Tachiki, T. Yano, S. Shibata, Mater. Sci. Eng. B 2009, 161, 85 – 90.en_US
dc.identifier.citedreferenceH. Segawa, D. Morishima, T. Yano, S. Shibata, Mater. Sci. Eng. B 2010, 173, 162 – 167.en_US
dc.identifier.citedreferenceM. Hu, F. S. Ou, W. Wu, I. Naumov, X. Li, A. M. Bratkovsky, R. S. Williams, Z. Y. Li, J. Am. Chem. Soc. 2010, 132, 12820 – 12822.en_US
dc.identifier.citedreferenceS. Barcelo, A. Kim, W. Wu, Z. Li, ACS Nano 2012, 6, 6446 – 6452.en_US
dc.identifier.citedreferenceT. Dvir, B. P. Timko, D. S. Kohane, R. Langer, Nat. Nanotechnol. 2011, 6, 13 – 22.en_US
dc.identifier.citedreferenceH. S. Ahn, N. Sinha, M. Zhang, D. Banerjee, S. Fang, R. H. Baughman, J. Heat Transfer 2006, 128, 1335 – 1342.en_US
dc.identifier.citedreferenceM. Yu, H. H. Funke, J. L. Falconer, R. D. Noble, Nano Lett. 2009, 9, 225 – 229.en_US
dc.identifier.citedreferenceD. Chandra, S. Yang, Acc. Chem. Res. 2010, 43, 1080 – 1091.en_US
dc.identifier.citedreferenceA. Izadi‐Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D. N. Futaba, H. Hatori, M. Yumura, S. Iijima, K. Hata, Adv. Mater. 2010, 22, E 235 –E 241.en_US
dc.identifier.citedreferenceD. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat. Mater. 2006, 5, 987 – 994.en_US
dc.identifier.citedreferenceH. J. Gao, X. Wang, H. M. Yao, S. Gorb, E. Arzt, Mech. Mater. 2005, 37, 275 – 285.en_US
dc.identifier.citedreferenceL. Qu, L. Dai, M. Stone, Z. Xia, Z. L. Wang, Science 2008, 322, 238 – 242.en_US
dc.identifier.citedreferenceC. L. Pint, K. Takei, R. Kapadia, M. Zheng, A. C. Ford, J. Zhang, A. Jamshidi, R. Bardhan, J. J. Urban, M. Wu, J. W. Ager, M. M. Oye, A. Javey, Adv. Energy Mater. 2011, 1, 1040 – 1045.en_US
dc.identifier.citedreferenceG. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett. 2006, 6, 215 – 218.en_US
dc.identifier.citedreferenceK. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, K. K. Gleason, Nano Lett. 2003, 3, 1701 – 1705.en_US
dc.identifier.citedreferenceN. Mingo, D. A. Broido, Phys. Rev. Lett. 2005, 95, 096105.en_US
dc.identifier.citedreferenceN. Kaji, Y. Tezuka, Y. Takamura, M. Ueda, T. Nishimoto, H. Nakanishi, Y. Horiike, Y. Baba, Anal. Chem. 2004, 76, 15 – 22.en_US
dc.identifier.citedreferenceF. Fachin, G. D. Chen, M. Toner, B. L. Wardle, J. Microelectromech. Syst. 2011, 20, 1428 – 1438.en_US
dc.identifier.citedreferenceT. D. B. Nguyen‐Vu, H. Chen, A. M. Cassell, R. Andrews, M. Meyyappan, J. Li, Small 2006, 2, 89 – 94.en_US
dc.identifier.citedreferenceM. A. Correa‐Duarte, N. Wagner, J. Rojas‐Chapana, C. Morsczeck, M. Thie, M. Giersig, Nano Lett. 2004, 4, 2233 – 2236.en_US
dc.identifier.citedreferenceS. Tawfick, M. De Volder, D. Copic, S. J. Park, C. R. Oliver, E. S. Polsen, M. J. Roberts, A. J. Hart, Adv. Mater. 2012, 24, 1628 – 1674.en_US
dc.identifier.citedreferenceT. Tanaka, M. Morigami, N. Atoda, Jpn. J. Appl. Phys. Part 1 1993, 32, 6059 – 6064.en_US
dc.identifier.citedreferenceA. Grinthal, S. H. Kang, A. K. Epstein, M. Aizenberg, M. Khan, J. Aizenberg, Nano Today 2012, 7, 35 – 52.en_US
dc.identifier.citedreferenceZ. C. Liu, L. J. Ci, S. Kar, P. M. Ajayan, J. Q. Lu, IEEE Trans. Nanotechnol. 2009, 8, 196 – 203.en_US
dc.identifier.citedreferenceE. Verploegen, A. J. Hart, M. De Volder, S. Tawfick, K. K. Chia, R. E. Cohen, J. Appl. Phys. 2011, 109, 094316.en_US
dc.identifier.citedreferenceM. F. L. De Volder, S. J. Park, S. H. Tawfick, D. O. Vidaud, A. J. Hart, J. Micromech. Microeng. 2011, 21, 045033.en_US
dc.identifier.citedreferenceD. Copic, S. J. Park, S. Tawfick, M. F. L. De Volder, A. J. Hart, Lab Chip 2011, 11, 1831 – 1837.en_US
dc.identifier.citedreferenceC. Journet, S. Moulinet, C. Ybert, S. T. Purcell, L. Bocquet, Europhys. Lett. 2005, 71, 104 – 109.en_US
dc.identifier.citedreferenceD. Copic, S. J. Park, S. Tawfick, M. De Volder, A. J. Hart, J. Visualized Exp. 2012, 65, e 3980.en_US
dc.identifier.citedreferenceN. Chakrapani, B. Q. Wei, A. Carrillo, P. M. Ajayan, R. S. Kane, Proc. Natl. Acad. Sci. USA 2004, 101, 4009 – 4012.en_US
dc.identifier.citedreferenceM. De Volder, S. H. Tawfick, S. J. Park, D. Copic, Z. Zhao, W. Lu, A. J. Hart, Adv. Mater. 2010, 22, 4384 – 4389.en_US
dc.identifier.citedreferenceH. Liu, S. H. Li, J. Zhai, H. J. Li, Q. S. Zheng, L. Jiang, D. B. Zhu, Angew. Chem. 2004, 116, 1166 – 1169; Angew. Chem. Int. Ed. 2004, 43, 1146 – 1149.en_US
dc.identifier.citedreferenceS. Tawfick, M. De Volder, A. J. Hart, Langmuir 2011, 27, 6389 – 6394.en_US
dc.identifier.citedreferenceY. Hayamizu, T. Yamada, K. Mizuno, R. C. Davis, D. N. Futaba, M. Yumura, K. Hata, Nat. Nanotechnol. 2008, 3, 289 – 294.en_US
dc.identifier.citedreferenceS. Tawfick, A. J. Hart, M. De Volder, Nanoscale 2012, 4, 3852 – 3856.en_US
dc.identifier.citedreferenceY. Hayamizu, R. C. Davis, T. Yamada, D. N. Futaba, S. Yasuda, M. Yumura, K. Hata, Phys. Rev. Lett. 2009, 102, 175505.en_US
dc.identifier.citedreferenceE. R. Meshot, K. D. Patel, S. Tawfick, K. A. Juggernauth, M. Bedewy, E. A. Verploegen, M. F. L. De Volder, A. J. Hart, Adv. Funct. Mater. 2012, 22, 577 – 584.en_US
dc.identifier.citedreferenceM. F. L. De Volder, D. O. Vidaud, E. R. Meshot, S. Tawfick, A. J. Hart, Microelectron. Eng. 2010, 87, 1233 – 1238.en_US
dc.identifier.citedreferenceSee Ref. [24].en_US
dc.identifier.citedreferenceM. F. L. De Volder, S. Tawfick, S. J. Park, A. J. Hart, ACS Nano 2011, 5, 7310 – 7317.en_US
dc.identifier.citedreferenceM. De Volder, D. Reynaerts, C. Van Hoof, S. Tawfick, A. J. Hart, IEEE Sensors 2010, 2369 – 2372.en_US
dc.identifier.citedreferencesee Ref. [22].en_US
dc.identifier.citedreferenceH. Cai, Y. Xu, P. G. He, Y. Z. Fang, Electroanalysis 2003, 15, 1864 – 1870.en_US
dc.identifier.citedreferenceY. P. Zhao, J. G. Fan, Appl. Phys. Lett. 2006, 88, 103123.en_US
dc.identifier.citedreferenceR. Chen, M.‐C. Lu, V. Srinivasan, Z. Wang, H. H. Cho, A. Majumdar, Nano Lett. 2009, 9, 548 – 553.en_US
dc.identifier.citedreferenceH. Namatsu, K. Kurihara, M. Nagase, K. Iwadate, K. Murase, Appl. Phys. Lett. 1995, 66, 2655 – 2657.en_US
dc.identifier.citedreferenceJ. J. Hill, K. Haller, B. Gelfand, K. J. Ziegler, ACS Appl. Mater. Interfaces 2010, 2, 1992 – 1998.en_US
dc.identifier.citedreferenceA. Dev, S. Chaudhuri, Nanotechnology 2007, 18, 175607.en_US
dc.identifier.citedreferenceD. Chandra, S. Yang, A. A. Soshinsky, R. J. Gambogi, ACS Appl. Mater. Interfaces 2009, 1, 1698 – 1704.en_US
dc.identifier.citedreferenceH. Duan, K. K. Berggren, Nano Lett. 2010, 10, 3710 – 3716.en_US
dc.identifier.citedreferenceH. Duan, J. K. W. Yang, K. K. Berggren, Small 2011, 7, 2661 – 2668.en_US
dc.identifier.citedreferenceA. Ishikawa, M. Sakata, A. Kawai, J. Photopolym. Sci. Technol. 2004, 17, 457 – 460.en_US
dc.identifier.citedreferenceB. Chen, S. Seidel, H. Hori, M. Gupta, ACS Appl. Mater. Interfaces 2011, 3, 4201 – 4205.en_US
dc.identifier.citedreferenceS. Choi, M. Yan, I. Adesida, Appl. Phys. Lett. 2008, 93, 163113.en_US
dc.identifier.citedreferenceD. E. Noga, R. A. Lawson, C.‐T. Lee, L. M. Tolbert, C. L. Henderson in Conference on Advances in Resist Materials and Processing Technology XXVI, San Jose, CA, 2009.en_US
dc.identifier.citedreferenceJ. Bico, B. Roman, L. Moulin, A. Boudaoud, Nature 2004, 432, 690 – 690.en_US
dc.identifier.citedreferenceM. Mastrangeli, S. Abbasi, C. Varel, C. Van Hoof, J. P. Celis, K. F. Boehringer, J. Micromech. Microeng. 2009, 19, 045015.en_US
dc.identifier.citedreferenceB. Roman, J. Bico, J. Phys. Condens. Matter 2010, 22, 493101.en_US
dc.identifier.citedreferenceM. Grzelczak, J. Vermant, E. M. Furst, L. M. Liz‐Marzan, ACS Nano 2010, 4, 3591 – 3605.en_US
dc.identifier.citedreferenceG. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418 – 2421.en_US
dc.identifier.citedreferenceN. Vogel, C. K. Weiss, K. Landfester, Soft Matter 2012, 8, 4044 – 4061.en_US
dc.identifier.citedreferenceB. Pokroy, S. H. Kang, L. Mahadevan, J. Aizenberg, Science 2009, 323, 237 – 240.en_US
dc.identifier.citedreferenceS. H. Kang, B. Pokroy, L. Mahadevan, J. Aizenberg, Acs Nano 2010, 4, 6323 – 6331.en_US
dc.identifier.citedreferenceM. Matsunaga, M. Aizenberg, J. Aizenberg, J. Am. Chem. Soc. 2011, 133, 5545 – 5553.en_US
dc.identifier.citedreferenceP. Kim, W. E. Adorno‐Martinez, M. Khan, J. Aizenberg, Nat. Protoc. 2012, 7, 311 – 327.en_US
dc.identifier.citedreferenceM. F. L. De Volder, R. Vansweevelt, P. Wagner, D. Reynaerts, C. Van Hoof, A. J. Hart, Acs Nano 2011, 5, 6593 – 6600.en_US
dc.identifier.citedreferenceC. L. Cheung, R. J. Nikolic, C. E. Reinhardt, T. F. Wang, Nanotechnology 2006, 17, 1339 – 1343.en_US
dc.identifier.citedreferenceA. J. Hart, A. H. Slocum, J. Phys. Chem. B 2006, 110, 8250 – 8257.en_US
dc.identifier.citedreferenceK. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 2004, 306, 1362 – 1364.en_US
dc.identifier.citedreferenceSee Ref. [31].en_US
dc.identifier.citedreferenceSee Ref. [25].en_US
dc.identifier.citedreferenceX. D. Lim, H. W. G. Foo, G. H. Chia, C. H. Sow, ACS Nano 2010, 4, 1067 – 1075.en_US
dc.identifier.citedreferenceJ. Liang, R. G. D. Jeyasingh, H.‐Y. Chen, H. S. P. Wong, IEEE Trans. Electron Devices 2012, 59, 1155 – 1163.en_US
dc.identifier.citedreferenceM. De Volder, J. Decoster, D. Reynaerts, C. Van Hoof, S.‐G. Kim, Small 2012, 8, 2006.en_US
dc.identifier.citedreferenceD. N. Futaba, K. Miyake, K. Murata, Y. Hayamizu, T. Yamada, S. Sasaki, M. Yumura, K. Hata, Nano Lett. 2009, 9, 3302 – 3307.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.