Show simple item record

Retention of Stem Cell Plasticity in Avian Primitive Streak Cells and the Effects of Local Microenvironment

dc.contributor.authorWang, Xiao‐yuen_US
dc.contributor.authorLi, Yanen_US
dc.contributor.authorMa, Zheng‐laien_US
dc.contributor.authorWang, Li‐jingen_US
dc.contributor.authorChuai, Manlien_US
dc.contributor.authorMünsterberg, Andreaen_US
dc.contributor.authorGeng, Jian‐guoen_US
dc.contributor.authorYang, Xuesongen_US
dc.date.accessioned2013-03-05T18:17:57Z
dc.date.available2014-05-01T14:28:12Zen_US
dc.date.issued2013-03en_US
dc.identifier.citationWang, Xiao‐yu ; Li, Yan; Ma, Zheng‐lai ; Wang, Li‐jing ; Chuai, Manli; Münsterberg, Andrea ; Geng, Jian‐guo ; Yang, Xuesong (2013). "Retention of Stem Cell Plasticity in Avian Primitive Streak Cells and the Effects of Local Microenvironment." The Anatomical Record 296(3): 533-543. <http://hdl.handle.net/2027.42/96743>en_US
dc.identifier.issn1932-8486en_US
dc.identifier.issn1932-8494en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96743
dc.description.abstractPrimitive streak ( PS ) is the first structure occurring in embryonic gastrulation, in which the epiblast cells undergo the epithelial‐mesenchymal transition to become the loose mesoderm cells subsequently. Because the mesoderm cells departing from different portions of PS are blessed with disparate migration trajectory and differentiation fate, one question is when the cell fate is determinated. To understand whether the cell fate and cell migration pattern will be alternated along with the microenvironment transformation, the traditional transplantation technology was used to replace the anterior PS cells in HH 4 host embryo using posterior PS tissue labeled by green fluorescent protein ( GFP ) in the same stage donor embryo, and then, we tracked the migration trajectory of the GFP ‐positive cells with fluorescence stereomicroscope after incubation, and eventually verified the cell contribution from the transplants with in situ hybridization and immunocytochemistry. The same experimental strategy applied for posterior PS site replacement in host embryo. We found that the transplanted posterior PS cells to anterior part of streak followed the anterior PS cell migration pattern rather than kept its posterior streak cell migration trajectory, and so did vice versa. In addition, the transplants were involved in the contribution to the subsequent organogenesis as the local PS tissues affirmed by specific expression of myocardial or hematopoietic markers. Therefore, our data strongly suggest that the PS cells still keep stem cell plasticity during gastrulation and the eventual cell fate will depend on the spatial gene expression within local microenvironment along with development. Anat Rec, 296:533–543, 2012. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherGastrulationen_US
dc.subject.otherLocal Microenvironmenten_US
dc.subject.otherPrimitive Streaken_US
dc.subject.otherGraften_US
dc.subject.otherCell Migrationen_US
dc.titleRetention of Stem Cell Plasticity in Avian Primitive Streak Cells and the Effects of Local Microenvironmenten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23382139en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96743/1/ar22640.pdf
dc.identifier.doi10.1002/ar.22640en_US
dc.identifier.sourceThe Anatomical Recorden_US
dc.identifier.citedreferenceRisau W, Flamme I. 1995. Vasculogenesis. Annu Rev Cell Dev Biol 11: 73 – 91.en_US
dc.identifier.citedreferenceChapman SC, Collignon J, Schoenwolf GC, Lumsden A. 2001. Improved method for chick whole‐embryo culture using a filter paper carrier. Dev Dyn 220: 284 – 289.en_US
dc.identifier.citedreferenceChapman SC, Matsumoto K, Cai Q, Schoenwolf GC. 2007. Specification of germ layer identity in the chick gastrula. BMC Dev Biol 7: 91 – 106.en_US
dc.identifier.citedreferenceChuai M, Weijer CJ. 2008. The mechanisms underlying primitive streak formation in the chick embryo. Curr Top Dev Biol 81: 135 – 156.en_US
dc.identifier.citedreferenceChuai M, Zeng W, Yang X, Boychenko V, Glazier JA, Weijer CJ. 2006. Cell movement during chick primitive streak formation. Dev Biol 296: 137 – 149.en_US
dc.identifier.citedreferenceCui C, Yang X, Chuai M, Glazier JA, Weijer CJ. 2005. Analysis of tissue flow patterns during primitive streak formation in the chick embryo. Dev Biol 284: 37 – 47.en_US
dc.identifier.citedreferenceDowns KM. 2009. The enigmatic primitive streak: prevailing notions and challenges concerning the body axis of mammals. Bioessays 31: 892 – 902.en_US
dc.identifier.citedreferenceHamburger V, Hamilton HL. 1951. A series of normal stages in the development of the chick embryo. J Morphol 88: 44 – 92.en_US
dc.identifier.citedreferenceHenrique D, Adam J, Myat A, Chitnis A, Lewis J, Ish‐Horowicz D. 1995. Expression of a Delta homologue in prospective neurons in the chick. Nature 375: 787 – 790.en_US
dc.identifier.citedreferenceJames RG, Schultheiss TM. 2003. Patterning of the avian intermediate mesoderm by lateral plate and axial tissues. Dev Biol 253: 109 – 124.en_US
dc.identifier.citedreferenceKimura W, Yasugi S, Stern CD, Fukuda K. 2006. Fate and plasticity of the endoderm in the early chick embryo. Dev Biol 289: 283 – 295.en_US
dc.identifier.citedreferenceKinder SJ, Tsang TE, Quinlan GA, Hadjantonakis AK, Nagy A, Tam PP. 1999. The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 126: 4691 – 4701.en_US
dc.identifier.citedreferenceKnezevic V, De Santo R, Mackem S. 1998. Continuing organizer function during chick tail development. Development 125: 1791 – 1801.en_US
dc.identifier.citedreferenceLarson JD, Wadman SA, Chen E, Kerley L, Clark KJ, Eide M, Lippert S, Nasevicius A, Ekker SC, Hackett PB, Essner JJ. 2004. Expression of VE‐cadherin in zebrafish embryos: a new tool to evaluate vascular development. Dev Dyn 231: 204 – 213.en_US
dc.identifier.citedreferenceLawson A, Schoenwolf GC. 2003. Epiblast and primitive‐streak origins of the endoderm in the gastrulating chick embryo. Development 130: 3491 – 3501.en_US
dc.identifier.citedreferenceLopez‐Sanchez C, Garcia‐Masa N, Ganan CM, Garcia‐Martinez V. 2009. Movement and commitment of primitive streak precardiac cells during cardiogenesis. Int J Dev Biol 53: 1445 – 1455.en_US
dc.identifier.citedreferenceMikawa T, Poh AM, Kelly KA, Ishii Y, Reese DE. 2004. Induction and patterning of the primitive streak, an organizing center of gastrulation in the amniote. Dev Dyn 229: 422 – 432.en_US
dc.identifier.citedreferenceOlivera‐Martinez I, Coltey M, Dhouailly D, Pourquie O. 2000. Mediolateral somitic origin of ribs and dermis determined by quail‐chick chimeras. Development 127: 4611 – 4617.en_US
dc.identifier.citedreferenceRosenquist GC. 1972. Endoderm movements in the chick embryo between the early short streak and head process stages. J Exp Zool 180: 95 – 103.en_US
dc.identifier.citedreferenceSelleck MA, Stern CD. 1991. Fate mapping and cell lineage analysis of Hensen's node in the chick embryo. Development 112: 615 – 626.en_US
dc.identifier.citedreferenceSomi S, Klein AT, Houweling AC, Ruijter JM, Buffing AA, Moorman AF, van den Hoff MJ. 2006. Atrial and ventricular myosin heavy‐chain expression in the developing chicken heart: strengths and limitations of non‐radioactive in situ hybridization. J Histochem Cytochem 54: 649 – 664.en_US
dc.identifier.citedreferenceTam PP, Behringer RR. 1997. Mouse gastrulation: the formation of a mammalian body plan. Mech Dev 68: 3 – 25.en_US
dc.identifier.citedreferenceYang X, Chrisman H, Weijer CJ. 2008. PDGF signalling controls the migration of mesoderm cells during chick gastrulation by regulating N‐cadherin expression. Development 135: 3521 – 3530.en_US
dc.identifier.citedreferenceYang X, Dormann D, Munsterberg AE, Weijer CJ. 2002. Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by FGF4 and FGF8. Dev Cell 3: 425 – 437.en_US
dc.identifier.citedreferenceYasuo H, Lemaire P. 2001. Generation of the germ layers along the animal‐vegetal axis in Xenopus laevis. Int J Dev Biol 45: 229 – 235.en_US
dc.identifier.citedreferenceYue Q, Wagstaff L, Yang X, Weijer C, Munsterberg A. 2008. Wnt3a‐mediated chemorepulsion controls movement patterns of cardiac progenitors and requires RhoA function. Development 135: 1029 – 1037.en_US
dc.identifier.citedreferenceZamir EA, Rongish BJ, Little CD. 2008. The ECM moves during primitive streak formation—computation of ECM versus cellular motion. PLoS Biol 6: 2163 – 2171.en_US
dc.identifier.citedreferenceBader D, Masaki T, Fischman DA. 1982. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J Cell Biol 95: 763 – 770.en_US
dc.identifier.citedreferenceBeddington RS. 1994. Induction of a second neural axis by the mouse node. Development 120: 613 – 620.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.