Show simple item record

High Performance Thermoelectricity in Earth‐Abundant Compounds Based on Natural Mineral Tetrahedrites

dc.contributor.authorLu, Xuen_US
dc.contributor.authorMorelli, Donald T.en_US
dc.contributor.authorXia, Yien_US
dc.contributor.authorZhou, Feien_US
dc.contributor.authorOzolins, Vidvudsen_US
dc.contributor.authorChi, Hangen_US
dc.contributor.authorZhou, Xiaoyuanen_US
dc.contributor.authorUher, Ctiraden_US
dc.date.accessioned2013-04-08T20:49:29Z
dc.date.available2014-05-01T14:28:21Zen_US
dc.date.issued2013-03en_US
dc.identifier.citationLu, Xu; Morelli, Donald T.; Xia, Yi; Zhou, Fei; Ozolins, Vidvuds; Chi, Hang; Zhou, Xiaoyuan; Uher, Ctirad (2013). "High Performance Thermoelectricity in Earth‐Abundant Compounds Based on Natural Mineral Tetrahedrites." Advanced Energy Materials 3(3): 342-348. <http://hdl.handle.net/2027.42/97156>en_US
dc.identifier.issn1614-6832en_US
dc.identifier.issn1614-6840en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97156
dc.description.abstractThermoelectric materials can convert waste heat into electricity, potentially improving the efficiency of energy usage in both industry and everyday life. Unfortunately, known good thermoelectric materials often are comprised of elements that are in low abundance and require careful doping and complex synthesis procedures. Here, we report dimensionless thermoelectric figure of merit near unity in compounds of the form Cu 12 ‐ x M x Sb 4 S 13 , where M is a transition metal such as Zn or Fe, for wide ranges of x . The compounds investigated here span the range of compositions of the natural mineral family of tetrahedrites, the most widespread sulfosalts on Earth, and we further show that the natural mineral itself can be used directly as an inexpensive source thermoelectric material. Thermoelectrics comprised of earth‐abundant elements will pave the way to many new, low cost thermoelectric energy generation opportunities. Compounds based on the natural mineral tetrahedrite exhibit thermoelectric properties comparable to state of the art materials . Tetrahedrites are semiconductors with large Seebeck coefficients and low electrical resistivity. Additionally, a highly anharmonic phonon spectrum gives rise to minimal lattice thermal conductivity. Natural tetrahedrite mineral may be used as a low cost, earth‐abundant source material for high performance thermoelectricity.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherElectronic Structures/Processes/Mechanismsen_US
dc.subject.otherThermoelectricsen_US
dc.subject.otherSemiconductorsen_US
dc.titleHigh Performance Thermoelectricity in Earth‐Abundant Compounds Based on Natural Mineral Tetrahedritesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics, 450 Church Street, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationotherDepartment of Physics & Astronomy, Michigan State University, 567 Wilson Road, East Lansing, Michigan 48824 USAen_US
dc.contributor.affiliationotherDepartment of Physics & Astronomy, Michigan State University, 567 Wilson Road, East Lansing, Michigan 48824 USA.en_US
dc.contributor.affiliationotherDepartment of Materials Science & Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095 USAen_US
dc.contributor.affiliationotherDepartment of Chemical Engineering & Materials Science, Michigan State University, 428 South Shaw Lane, East Lansing, Michigan 48824 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97156/1/aenm_201200650_sm_suppl.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97156/2/342_ftp.pdf
dc.identifier.doi10.1002/aenm.201200650en_US
dc.identifier.sourceAdvanced Energy Materialsen_US
dc.identifier.citedreferenceJ. W. Miller, J. R. Craig, Am. Mineral. 1983, 68, 227.en_US
dc.identifier.citedreferenceC. Uher, in Semiconductors and Semimetals, Vol. 69 (ed. T. M. Tritt ), Academic Press, San Diego, 2001, Ch. 5.en_US
dc.identifier.citedreferenceB. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, Science 2008, 320, 634.en_US
dc.identifier.citedreferenceK. Biswas, J. He, Q. Zhang, G. Y. Wang, C. Uher, V. Dravid, M. G. Kanatzidis, Nat. Chem. 2011, 3, 160.en_US
dc.identifier.citedreferenceS. Girard, J. He, C.‐P Li, S. Moses, G. Y. Wang, C. Uher, V. Dravid, M. G. Kanatzidis, Nano Lett. 2010, 10, 2825.en_US
dc.identifier.citedreferenceR. J. Mehta, Z Yanliang, C. Karthik, B. Singh, R. W. Siegel, T. Borca‐Tasciuc, G. Ramanath, Nat. Mater. 2012, 11, 233.en_US
dc.identifier.citedreferenceG. A. Slack, in CRC Handbook of Thermoelectrics (ed. D. M. Rowe ), CRC Press, Boca Raton, 1995, Ch. 34.en_US
dc.identifier.citedreferenceG. A. Slack, in Solid State Physics (ed. H. Ehrenreich, F. Weitz, and D. Turnbull ) Academic Press, New York 1979, p. 1.en_US
dc.identifier.citedreferenceD. G. Cahill, R. O. Pohl, Phys. Rev. B 1987, 35, 4067.en_US
dc.identifier.citedreferenceG. S. Nolas, G. A. Slack, Am. Sci. 2001, 89, 136.en_US
dc.identifier.citedreferenceD. T. Morelli, V. Jovovic, J. P. Heremans, Phys. Rev. Lett. 2008, 101, 035901.en_US
dc.identifier.citedreferenceE. J. Skoug, D. T. Morelli, Phys. Rev. Lett. 2011, 107, 235901.en_US
dc.identifier.citedreferenceR. Berman, Thermal Conduction in Solids, Oxford, London 1976.en_US
dc.identifier.citedreferenceY. Zhang, E. J. Skoug, J. Cain, V. Ozoliņs, D. T. Morelli, C. Wolverton, Phys. Rev. B 2012, 85, 054306.en_US
dc.identifier.citedreferenceD. T. Morelli, J. P. Heremans, G. A. Slack, Phys. Rev. B 2002, 66, 195304.en_US
dc.identifier.citedreferenceB. J. Wuensch, Zeitschrift Kristall. 1964, 119, 437.en_US
dc.identifier.citedreferenceA. Pfitzner, M. Evain, V. Petricek, Acta Crystall. 1997, B53, 337.en_US
dc.identifier.citedreferenceK. Suekuni, K. Tsuruta, T. Ariga, M. Koyano, Appl. Phys. Express 2012, 5, 051201.en_US
dc.identifier.citedreferenceE. Mackovicky, K. Forcher, W. Lottermoser, G. Amthauer, Mineral. Petrol. 1990, 43, 73.en_US
dc.identifier.citedreferenceStefano Fine Minerals, Inc., Ann Arbor, Michigan USA.en_US
dc.identifier.citedreferenceS. Fadda, M. Fiori, S. M. Grillo, Geochem., Mineral., Petrol. 2005, 43, 79.en_US
dc.identifier.citedreferenceS. Kitazono, H. Ueno, Resource Geol. 2003, 53, 143.en_US
dc.identifier.citedreferenceT. Arlt, L. W. Diamond, Mineral. Mag. 1998, 62, 801.en_US
dc.identifier.citedreferenceT. J. Seebeck, Abh. Akad. Wiss. Berlin 1822, 1820‐21, 289.en_US
dc.identifier.citedreferenceM. Telkes, Amer. Mineral. 1950, 35, 536.en_US
dc.identifier.citedreferencea) J. Kresse, G. Hafner, Phys. Rev. B 1993, 47, 558; b) J. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.en_US
dc.identifier.citedreferenceJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.en_US
dc.identifier.citedreferenceA. I. Liechtenstein, V. I. Anisimov, J. Zaanen, Phys. Rev. B 1995, 52, R5467.en_US
dc.identifier.citedreferenceJ. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2006, 124, 219906.en_US
dc.identifier.citedreferenceR. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, Nature 2001, 413, 597.en_US
dc.identifier.citedreferenceB. C. Sales, D. Mandrus, R. L. Williams, Science 1996, 272, 1325.en_US
dc.identifier.citedreferenceH. Li, X. Tang, Q. Zhang, C. Uher, Appl. Phys. Lett. 2009, 94, 102114.en_US
dc.identifier.citedreferenceG. Rogl, Z. Aabdin, E. Schafler, J. Horky, D. Setman, M. Zehetbauer, M. Kriegisch, O. Eibl, A. Grytsiv, E. Bauer, M. Reinecker, W. Schranz, P. Rogl, J. Alloys Compd. 2012, 537, 183.en_US
dc.identifier.citedreferenceX. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, Journal of the American Chemical Society 2011, 133, 7837.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.