Show simple item record

Transport of the plasma sheet electrons to the geostationary distances

dc.contributor.authorGanushkina, N. Y.en_US
dc.contributor.authorAmariutei, O. A.en_US
dc.contributor.authorShprits, Y. Y.en_US
dc.contributor.authorLiemohn, M. W.en_US
dc.date.accessioned2013-04-08T20:49:40Z
dc.date.available2014-03-03T15:09:24Zen_US
dc.date.issued2013-01en_US
dc.identifier.citationGanushkina, N. Y.; Amariutei, O. A.; Shprits, Y. Y.; Liemohn, M. W. (2013). "Transport of the plasma sheet electrons to the geostationary distances." Journal of Geophysical Research: Space Physics 118(1): 82-98. <http://hdl.handle.net/2027.42/97187>en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97187
dc.description.abstractThe transport and acceleration of low‐energy electrons (50–250 keV) from the plasma sheet to the geostationary orbit were investigated. Two moderate storm events, which occurred on 6–7 November 1997 and 12–14 June 2005, were modeled using the Inner Magnetosphere Particle Transport and Acceleration model (IMPTAM) with the boundary set at 10  R E in the plasma sheet. The output of the IMPTAM was compared to the observed electron fluxes in four energy ranges (50–225 keV) measured by the Synchronous Orbit Particle Analyzer instrument onboard the Los Alamos National Laboratory spacecraft. It was found that the large‐scale convection in combination with substorm‐associated impulsive fields is the drivers of the transport of plasma sheet electrons from 10  R E to geostationary orbit at 6.6  R E during storm times. The addition of radial diffusion had no significant influence on the modeled electron fluxes. At the same time, the modeled electron fluxes are one (two) order(s) smaller than the observed ones for 50–150 keV (150–225 keV) electrons, respectively, most likely due to inaccuracy of electron boundary conditions. The loss processes due to wave‐particle interactions were not considered. The choice of the large‐scale convection electric field model used in simulations did not have a significant influence on the modeled electron fluxes, since there is not much difference between the equipotential contours given by the Volland‐Stern and the Boyle et al . (1997) models at distances from 10 to 6.6  R E in the plasma sheet. Using the TS05 model for the background magnetic field instead of the T96 model resulted in larger deviations of the modeled electron fluxes from the observed ones due to specific features of the TS05 model. The increase in the modeled electron fluxes can be as large as two orders of magnitude when substorm‐associated electromagnetic fields were taken into account. The obtained model distribution of low‐energy electron fluxes can be used as an input to the radiation belt models. This seed population for radiation belts will affect the local acceleration up to relativistic energies. Key Points Transport of plasma sheet electrons due to convection and substorms Importance of boundary conditions in plasma sheet Importance of magnetic field model choiceen_US
dc.publisherAGUen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSeed Population for Radiation Beltsen_US
dc.titleTransport of the plasma sheet electrons to the geostationary distancesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97187/1/jgra50047.pdf
dc.identifier.doi10.1029/2012JA017923en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceSergeev, V., V. Angelopoulos, S. Apatenkov, J. Bonnell, R. Ergun, J. McFadden, D. Larson, R. Nakamura, and A. Runov ( 2009 ), Structure of injection front in the flow braking region, Geophys. Res. Lett., 36, L21105, doi: 10.1029/2009GL040658.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2002 ), Simultaneous observations of earthward flow bursts and plasmoid ejection during magnetospheric substorms, J. Geophys. Res., 107 ( A7 ), 1106, doi: 10.1029/2000JA003501.en_US
dc.identifier.citedreferenceShepherd, G. G., R. Bostrom, H. Derblom, C.‐G. Falthammar, R. Gendrin, K. Kaila, A. Korth, A. Pedersen, R. Pellinen, and G. Wrenn ( 1980 ), Plasma and field signatures of poleward propagating auroral precipitation observed at the foot of the Geos 2 field line, J. Geophys. Res., 85 ( A9 ), 4587 – 4601, doi: 10.1029/JA085iA09p04587.en_US
dc.identifier.citedreferenceShprits, Y. Y., N. P. Meredith, and R. M. Thorne ( 2007 ), Parameterization of radiation belt electron loss timescales due to interactions with chorus waves, Geophys. Res. Lett., 34, L11110, doi: 10.1029/2006GL029050.en_US
dc.identifier.citedreferenceShprits, Y. Y., D. Subbotin, and B. Ni ( 2009 ), Evolution of electron fluxes in the outer radiation belt computed with the VERB code, J. Geophys. Res., 114, A11209, doi: 10.1029/2008JA013784.en_US
dc.identifier.citedreferenceShprits Y. Y., and R. M. Thorne ( 2004 ), Time dependent radial diffusion modeling of relativistic electrons with realistic loss rates, Geophys. Res. Lett., 31, L08805, doi: 10.1029/2004GL019591.en_US
dc.identifier.citedreferenceStern, D. ( 1975 ), The motion of a proton in the equatorial magnetosphere, J. Geophys. Res., 80 ( 4 ), 595 – 599.en_US
dc.identifier.citedreferenceTaylor, M. G. G. T., R. H. W. Friedel, G. D. Reeves, M. W. Dunlop, T. A. Fritz, P. W. Daly, and A. Balogh ( 2004 ), Multisatellite measurements of electron phase space density gradients in the Earth's inner and outer magnetosphere, J. Geophys. Res., 109, A05220, doi: 10.1029/2003JA010294.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space weather modeling framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.en_US
dc.identifier.citedreferenceTsyganenko, N. A. ( 1995 ), Modeling the Earth's magnetospheric magnetic field confined within a realistic magnetopause, J. Geophys. Res., 100, 5599 – 5612.en_US
dc.identifier.citedreferenceTsyganenko, N. A., and T. Mukai ( 2003 ), Tail plasma sheet models derived from Geotail particle data, J. Geophys. Res., 108 ( A3 ), 1136, doi: 10.1029/2002JA009707.en_US
dc.identifier.citedreferenceTsyganenko, N. A., H. J. Singer, and J. C. Kasper ( 2003 ), Storm‐time distortion of the inner magnetosphere: How severe can it get?, J. Geophys. Res., 108 ( A5 ), 1209, doi: 10.1029/2002JA009808.en_US
dc.identifier.citedreferenceTsyganenko, N. A., and M. I. Sitnov ( 2005 ), Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., 110, A03208, doi: 10.1029/2004JA010798.en_US
dc.identifier.citedreferenceTu, J.‐N., K. Tsuruda, H. Hayakawa, A. Matsuoka, T. Mukai, I. Nagano, and S. Yagitani ( 2000 ), Statistical nature of impulsive electric fields associated with fast ion flow in the near‐Earth plasma sheet, J. Geophys. Res., 105 ( A8 ), 18,901 – 18,907, doi: 10.1029/1999JA000428.en_US
dc.identifier.citedreferenceVarotsou, A., D. Boscher, S. Bourdarie, R. B. Horne, S. A. Glauert, and N. P. Meredith ( 2005 ), Simulation of the outer radiation belt electrons near geosynchronous orbit including both radial diffusion and resonant interaction with whistler‐mode chorus waves, Geophys. Res. Lett., 32, L19106, doi: 10.1029/2005GL023282.en_US
dc.identifier.citedreferenceVolland, H. ( 1973 ), A semi‐empirical model of large‐scale magnetospheric electric fields, J. Geophys. Res., 78 ( 1 ), 171 – 180.en_US
dc.identifier.citedreferenceWang, C.‐P., M. Gkioulidou, L. R. Lyons, and V. Angelopoulos ( 2012 ), Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet, J. Geophys. Res., 117, A08215, doi: 10.1029/2012JA017658.en_US
dc.identifier.citedreferenceWang, C.‐P., M. Gkioulidou, L. R. Lyons, R. A. Wolf, V. Angelopoulos, T. Nagai, J. M. Weygand, and A. T. Y. Lui ( 2011 ), Spatial distributions of ions and electrons from the plasma sheet to the inner magnetosphere: Comparisons between THEMIS‐Geotail statistical results and the Rice convection model, J. Geophys. Res., 116, A11216, doi: 10.1029/2011JA016809.en_US
dc.identifier.citedreferenceWygant, J., D. Rowland, H. J. Singer, M. Temerin, F. Mozer, and M. K. Hudson ( 1998 ), Experimental evidence on the role of the large spatial scale electric field in creating the ring current, J. Geophys. Res., 103 ( A12 ), 29,527 – 29,544, doi: 10.1029/98JA01436.en_US
dc.identifier.citedreferenceZaharia, S., C. Z. Cheng, and J. R. Johnson ( 2000 ), Particle transport and energization associated with substorms, J. Geophys. Res., 105 ( A8 ), 18,741 – 18,752, doi: 10.1029/1999JA000407.en_US
dc.identifier.citedreferenceAggson, T. L., J. P. Heppner, and N. C. Maynard ( 1983 ), Observations of large magnetospheric electric fields during the onset phase of a substorm, J. Geophys. Res., 88 ( A5 ), 3981 – 3990, doi: 10.1029/JA088iA05p03981.en_US
dc.identifier.citedreferenceAlbert, J. M., N. P. Meredith, and R. B. Horne ( 2009 ), Three‐dimensional diffusion simulation of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 114, A09214, doi: 10.1029/2009JA014336.en_US
dc.identifier.citedreferenceAmariutei, O. A., and N. Yu. Ganushkina ( 2012 ), On the prediction of the auroral westward electrojet index, Ann. Geophys., 30, 841 – 847, doi: 10.5194/angeo‐30‐841‐2012.en_US
dc.identifier.citedreferenceAngelopoulos, V., W. Baumjohann, C. F. Kennel, F. V. Coroniti, M. G. Kivelson, R. Pellat, R. J. Walker, H. Luhr, and G. Paschmann ( 1992 ), Bursty bulk flows in the inner central plasma sheet, J. Geophys. Res., 97 ( A4 ), 4027 – 4039, doi: 10.1029/91JA02701.en_US
dc.identifier.citedreferenceBaker, D. N., J. B. Blake, L. B. Callis, R. D. Belian, and T. E. Cayton ( 1989 ), Relativistic electrons near geostationary orbit: Evidence for internal magnetospheric acceleration, Geophys. Res. Lett., 16 ( 6 ), 559 – 562, doi: 10.1029/GL016i006p00559.en_US
dc.identifier.citedreferenceBame, S. J., D. J. McComas, M. F. Thomsen, B. L. Barraclough, R. C. Elphic, J. P. Glore, J. T. Gosling, J. C. Chavez, E. P. Evans, and F. J. Wymer ( 1993 ), Magnetospheric plasma analyzer for spacecraft with constrained resources, Rev. Sci. Instr., 64, 1026.en_US
dc.identifier.citedreferenceBarker, A. B., X. Li, and R. S. Selesnick ( 2005 ), Modeling the radiation belt electrons with radial diffusion driven by the solar wind, Space Weather, 3, S10003, doi: 10.1029/2004SW000118.en_US
dc.identifier.citedreferenceBaumjohann, W., G. Paschmann, and H. Luhr ( 1990 ), Characteristics of high‐speed ion flows in the plasma sheet, J. Geophys. Res., 95 ( A4 ), 3801 – 3809, doi: 10.1029/JA095iA04p03801.en_US
dc.identifier.citedreferenceBelian, R. D., G. R. Gisler, T. Cayton, and R. Christensen ( 1992 ), High‐ Z energetic particles at geosynchronous orbit during the great solar proton event series of October 1989, J. Geophys. Res., 97, 16,897.en_US
dc.identifier.citedreferenceBirn, J., A. V. Artemyev, D. N. Baker, M. Echim, M. Hoshino, and L. M. Zelenyi ( 2012 ), Particle acceleration in the magnetotail and aurora, Space Sci. Rev., 173 ( 1–4 ), 49 – 102.en_US
dc.identifier.citedreferenceBirn, J., M. F. Thomsen, J. E. Borovsky, G. D. Reeves, D. J. McComas, and R. D. Belian ( 1997 ), Characteristic plasma properties during dispersionless substorm injections at geosynchronous orbit, J. Geophys. Res., 102 ( A2 ), 2309 – 2324, doi: 10.1029/96JA02870.en_US
dc.identifier.citedreferenceBirn, J., M. F. Thomsen, J. E. Borovsky, G. D. Reeves, D. J. McComas, R. D. Belian, and M. Hesse ( 1998 ), Substorm electron injections: Geosynchronous observations and test particle simulations, J. Geophys. Res., 103 ( A5 ), 9235 – 9248, doi: 10.1029/97JA02635.en_US
dc.identifier.citedreferenceBoyle, C., Reiff, P., and Hairston, M., ( 1997 ) Empirical polar cap potentials, J. Geophys. Res., 102 ( A1 ), 111 – 125.en_US
dc.identifier.citedreferenceBorovsky J. E., M. F. Thomsen, R. C. Elphic, T. E. Cayton, and D. J. McComas ( 1998 ), The transport of plasma sheet material from the distant tail to geosynchronous orbit, J. Geophys. Res., 103, 20,297 – 20,331.en_US
dc.identifier.citedreferenceBrautigam, D. H., and J. M. Albert ( 2000 ), Radial diffusion analysis of outer radiation belt electrons during the 9 October 1990 magnetic storm, J. Geophys. Res., 105, 291.en_US
dc.identifier.citedreferenceCattell, C. A., and F. S. Mozer ( 1984 ), Substorm electric fields in the Earth's magnetotail, in Magnetic Reconnection in Space and Laboratory Plasmas, Geophys. Monogr. Ser., vol. 30, edited by E. W. Hones Jr., pp. 208 – 215, AGU, Washington, D.C.en_US
dc.identifier.citedreferenceCayton, T. E., R. D. Belian, S. P. Gary, T. A. Fritz, and D. N. Baker ( 1989 ), Energetic electron components at geosynchronous orbit, Geophys. Res. Lett., 16 ( 2 ), 147 – 150, doi: 10.1029/GL016i002p00147.en_US
dc.identifier.citedreferenceChen, M. W., M. Schulz, P. C. Anderson, G. Lu, G. Germany, and M. Wüest ( 2005 ), Storm time distributions of diffuse auroral electron energy and X‐ray flux: Comparison of drift‐loss simulations with observations, J. Geophys. Res., 110, A03210, doi: 10.1029/2004JA010725.en_US
dc.identifier.citedreferenceChriston, S. P., D. J. Williams, D. G. Mitchell, L. A. Frank, and C. Y. Huang ( 1989 ), Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions, J. Geophys. Res., 94 ( A10 ), 13,409 – 13,424, doi: 10.1029/JA094iA10p13409.en_US
dc.identifier.citedreferenceElkington, S. R., M. Wiltberger, A. A. Chan, and D. N. Baker ( 2004 ), Physical models of the geospace radiation environment, J. Atmos. Sol.‐Terr. Phys., 66, 1371 – 1387, doi: 10.1016/j.jastp.2004.03.023.en_US
dc.identifier.citedreferenceFriedel, R. H. W., H. Korth, M. G. Henderson, M. E. Thomsen, and J. D. Scudder ( 2001 ), Plasma sheet access to the inner magnetosphere, J. Geophys. Res., 106, 5845 – 5858.en_US
dc.identifier.citedreferenceFok, M.‐C., R. B. Horne, N. P. Meredith, and S. A. Glauert ( 2008 ), Radiation belt environment model: Application to space weather nowcasting, J. Geophys. Res., 113, A03S08, doi: 10.1029/2007JA012558.en_US
dc.identifier.citedreferenceFälthammar, C.‐G. ( 1965 ), Effects of time‐dependent electric fields on geomagnetically trapped radiation, J. Geophys. Res., 70, 2503.en_US
dc.identifier.citedreferenceGanushkina, N. Yu. ( 2011 ), IMPTAM: Including self‐consistent magnetic field in ring current modeling, Oral presentation at 2011 Joint CEDAR‐GEM workshop, 26 June–1 July, Santa Fe, NM, USA.en_US
dc.identifier.citedreferenceGanushkina, N. Yu., S. Dubyagin, M. Kubyshkina, M. Liemohn, and A. Runov ( 2012a ), Inner magnetosphere currents during CIR/HSS storm on July 21–23, 2009, J. Geophys. Res., in press, doi: 10.1029/2011JA017393.en_US
dc.identifier.citedreferenceGanushkina, N., M. Liemohn, M. Kubyshkina, R. Ilie, and H. Singer ( 2010 ), Distortions of the magnetic field by storm‐time current systems in earth's magnetosphere, Ann. Geophys., 28, 123 – 140, doi: 10.5194/angeo‐28‐123‐2010.en_US
dc.identifier.citedreferenceGanushkina N. Yu., M. W. Liemohn, and T. I. Pulkkinen ( 2012b ), Storm‐time ring current: Model‐dependent results, Ann. Geophys., 30, 177 – 202, doi: 10.5194/angeo‐30‐177‐2012.en_US
dc.identifier.citedreferenceGanushkina, N. Y., T. I. Pulkkinen, V. F. Bashkirov, D. N. Baker, and X. Li ( 2001 ), Formation of intense nose structures, Geophys. Res. Lett., 28 ( 3 ), 491 – 494.en_US
dc.identifier.citedreferenceGanushkina, N. Yu., T. I. Pulkkinen, and T. Fritz ( 2005 ), Role of substorm‐associated impulsive electric fields in the ring current development during storms, Ann. Geophys., 23, 579 – 591, doi: 10.5194/angeo‐23‐579‐2005.en_US
dc.identifier.citedreferenceGanushkina, N., T. I. Pulkkinen, M. Liemohn, and A. Milillo ( 2006 ), Evolution of the proton ring current energy distribution during April 21–25, 2001 storm, J. Geophys. Res., 111, A11S08, doi: 10.1029/2006JA011609.en_US
dc.identifier.citedreferenceGlocer, A., M.‐C. Fok, T. Nagai, G. Toth, T. Guild, and J. Blake ( 2011 ), Rapid rebuilding of the outer radiation belt, J. Geophys. Res., 116, A09213, doi: 10.1029/2011JA016516.en_US
dc.identifier.citedreferenceHorne, R. B., N. P. Meredith, S. A. Glauert, A. Varotsou, R. M. Thorne, Y. Y. Shprits, and R. R. Anderson ( 2006 ), Mechanisms for the acceleration of radiation belt electrons, in Recurrent Magnetic Storms: Corotating Solar Wind Streams, Geophys. Monogr. Ser., vol. 167, edited by B. T. Tsurutani, R. L. McPherron, W. D. Gonzalez, G. Lu, J. H. A. Sobral, and N. Gopalswamy, pp. 151 – 173, AGU, Washington, D.C.en_US
dc.identifier.citedreferenceHorne, R. B., and R. M. Thorne ( 2003 ), Relativistic electron acceleration and precipitation during resonant interactions with whistler‐mode chorus, Geophys. Res. Lett., 30 ( 10 ), 1527, doi: 10.1029/2003GL016973.en_US
dc.identifier.citedreferenceHuang, C. Y., and L. A. Frank, ( 1986 ) A statistical study of the central plasma sheet: Implications for substorm models, Geophys. Res. Lett., 13, 652 – 655.en_US
dc.identifier.citedreferenceIngraham, J. C., T. E. Cayton, R. D. Belian, R. A. Christensen, R. H. W. Friedel, M. M. Meier, G. D. Reeves, and M. Tuszewski ( 2001 ), Substorm injection of relativistic electrons to geosynchronous orbit during the great magnetic storm of March 24, 1991, J. Geophys. Res., 106, 25,759 – 25,776.en_US
dc.identifier.citedreferenceJordanova, V. K., L. M. Kistler, J. U. Kozyra, G. V. Khazanov, and A. F. Nagy, ( 1996 ) Collisional losses of ring current ions, J. Geophys. Res., 101 ( A1 ), doi: 10.1029/95JA02000.en_US
dc.identifier.citedreferenceJordanova, V. K., L. M. Kistler, M. F. Thomsen, and C. G. Mouikis ( 2003 ), Effects of plasma sheet variability on the fast initial ring current decay, Geophys. Res. Lett., 30 ( 6 ), 1311, doi: 10.1029/2002GL016576.en_US
dc.identifier.citedreferenceKaufmann, R. L., W. R. Paterson, and L. A. Frank ( 2005 ), Relationships between the ion flow speed, magnetic flux transport rate, and other plasma sheet parameters, J. Geophys. Res., 110, A09216, doi: 10.1029/2005JA011068.en_US
dc.identifier.citedreferenceKerns, K. J., D. A. Hardy, and M. S. Gussenhoven ( 1994 ), Modeling of convection boundaries seen by CRRES in 120‐eV to 28‐keV particles, J. Geophys. Res., 99 ( A2 ), 2403 – 2414, doi: 10.1029/93JA02767.en_US
dc.identifier.citedreferenceKim, H. J., and A. A. Chan ( 1997 ), Fully adiabatic changes in storm time relativistic electron fluxes, J. Geophys. Res., 102, 22,107 ‐ 22,116, doi: 10.1029/97JA01814.en_US
dc.identifier.citedreferenceKurita, S., et al. ( 2011 ), Transport and loss of the inner plasma sheet electrons: THEMIS observations, J. Geophys. Res., 116, A03201, doi: 10.1029/2010JA015975.en_US
dc.identifier.citedreferenceLi, X., D. N. Baker, M. Temerin, G. D. Reeves, and R. D. Belian ( 1998 ), Simulation of dispersionless injections and drift echoes of energetic electrons associated with substorms, Geophys. Res. Lett., 25, 3763 – 3766.en_US
dc.identifier.citedreferenceLi, X., T. E. Sarris, D. N. Baker, W. K. Peterson, and H. J. Singer ( 2003 ), Simulation of energetic particle injections associated with a substorm on August 27, 2001, Geophys. Res. Lett., 30, 1004, doi: 10.1029/2002GL015967.en_US
dc.identifier.citedreferenceLiu, W. L., X. Li, T. Sarris, C. Cully, R. Ergun, V. Angelopoulos, D. Larson, A. Keiling, K. H. Glassmeier, and H. U. Auster ( 2009 ), Observation and modeling of the injection observed by THEMIS and LANL satellites during the 23 March 2007 substorm event, J. Geophys. Res., 114, A00C18, doi: 10.1029/2008JA013498.en_US
dc.identifier.citedreferenceLyons, L. R., D.‐Y. Lee, R. M. Thorne, R. B. Horne, and A. J. Smith ( 2005 ), Solar wind‐magnetosphere coupling leading to relativistic electron energization during high‐speed streams, J. Geophys. Res., 110, A11202, doi: 10.1029/2005JA011254.en_US
dc.identifier.citedreferenceLyons, L. R., Y. Nishimura, X. Xing, A. Runov, V. Angelopoulos, E. Donovan, and T. Kikuchi ( 2012 ), Coupling of dipolarization front flow bursts to substorm expansion phase phenomena within the magnetosphere and ionosphere, J. Geophys. Res., 117, A02212, doi: 10.1029/2011JA017265.en_US
dc.identifier.citedreferenceMaynard, N. C., W. J. Burke, E. M. Basinska, G. M. Erickson, W. J. Hughes, H. J. Singer, A. G. Yahnin, D. A. Hardy, and F. S. Mozer ( 1996 ), Dynamics of the inner magnetosphere near times of substorm onsets, J. Geophys. Res., 101 ( A4 ), 7705 – 7736, doi: 10.1029/95JA03856.en_US
dc.identifier.citedreferenceMauk, B. H., and C. I. Meng ( 1983 ), Dynamical injections as the source of near geostationary quiet time particle spatial boundaries, J. Geophys. Res., 88 ( A12 ), 10,011 – 10,024, doi: 10.1029/JA088iA12p10011.en_US
dc.identifier.citedreferenceMeredith, N. P., R. B. Horne, and R. R. Anderson ( 2001 ), Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies, J. Geophys. Res., 106, 13,165 – 13,178.en_US
dc.identifier.citedreferenceMithaiwala, M. J., and W. Horton ( 2005 ), Substorm injections produce sufficient electron energization to account for MeV flux enhancements following some storms, J. Geophys. Res., 110, A07224, doi: 10.1029/2004JA010511.en_US
dc.identifier.citedreferenceMiyoshi, Y. S., V. K. Jordanova, A. Morioka, M. F. Thomsen, G. D. Reeves, D. S. Evans, and J. C. Green ( 2006 ), Observations and modeling of energetic electron dynamics during the October 2001 storm, J. Geophys. Res., 111, A11S02, doi: 10.1029/2005JA011351.en_US
dc.identifier.citedreferenceNakamura, R., et al. ( 2002 ), Motion of the dipolarization front during a flow burst event observed by Cluster, Geophys. Res. Lett., 29 ( 20 ), 1942, doi: 10.1029/2002GL015763.en_US
dc.identifier.citedreferenceOhtani, S. ( 1998 ), Earthward expansion of tail current disruption: Dual‐satellite study, J. Geophys. Res., 103 ( A4 ), 6815 – 6825, doi: 10.1029/98JA00013.en_US
dc.identifier.citedreferenceParker, E. N., and H. A. Stewart ( 1967 ), Nonlinear inflation of a magnetic dipole, J. Geophys. Res., 72, 5287.en_US
dc.identifier.citedreferencePierrard, V., G. V. Khazanov, J. Cabrera, and J. Lemaire ( 2008 ), Influence of the convection electric field models on predicted plasmapause positions during magnetic storms, J. Geophys. Res., 113, A08212, doi: 10.1029/2007JA012612.en_US
dc.identifier.citedreferencePulkkinen, T. I., Ganushkina, N. Yu., Donovan, E., Li, X., Reeves, G. D., Russell, C. T., Singer, H. J., and J. A. Slavin ( 2005 ) Storm‐substorm coupling during 16 hours of Dst steadily at 150 nT, in The Inner Magnetosphere: Physics and Modeling, Geophysical Monograph, vol. 155, edited by T. I. Pulkkinen, N. A. Tsyganenko, and R. H. W. Friedel, pp. 155 – 161, AGU, Washington, D.C.en_US
dc.identifier.citedreferenceReeves, G. D., M. G. Henderson, P. S. McLachlan, R. D. Belian, R. H. W. Friedel, and A. Korth ( 1996 ) Radial propagation of substorm injections, Proceedings of the 3rd International Conference on Substorms, Versailles, France, 12–17 May, pp. 579 – 584.en_US
dc.identifier.citedreferenceRoederer, J. G. ( 1970 ), Dynamics of Geomagnetically Trapped Radiation, 36 pp., Springer‐Verlag, New York.en_US
dc.identifier.citedreferenceRowland, D. E., and J. R. Wygant ( 1998 ), Dependence of the large‐scale, inner magnetospheric electric field on geomagnetic activity, J. Geophys. Res., 103 ( A7 ), 14,959 – 14,964, doi: 10.1029/97JA03524.en_US
dc.identifier.citedreferenceRunov, A., V. Angelopoulos, and X.‐Z. Zhou ( 2012 ), Multipoint observations of dipolarization front formation by magnetotail reconnection, J. Geophys. Res., 117, A05230, doi: 10.1029/2011JA017361.en_US
dc.identifier.citedreferenceRunov, A., V. Angelopoulos, X.‐Z. Zhou, X.‐J. Zhang, S. Li, F. Plaschke, and J. Bonnell ( 2011 ), A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet, J. Geophys. Res., 116, A05216, doi: 10.1029/2010JA016316.en_US
dc.identifier.citedreferenceSarris, T. E., and X. Li ( 2005 ), Evolution of the dispersionless injection boundary associated with substorms, Ann. Geophys., 23, 877 – 884, doi: 10.5194/angeo‐23‐877‐2005.en_US
dc.identifier.citedreferenceSarris, T. E., X. Li, N. Tsaggas, and N. Paschalidis ( 2002 ), Modeling energetic particle injections in dynamic pulse fields with varying propagation speeds, J. Geophys. Res., 107, 1033, doi: 10.1029/2001JA900166.en_US
dc.identifier.citedreferenceSchulz, M., and L. Lanzerotti ( 1974 ), Particle Diffusion in the Radiation Belts, Springer, New York.en_US
dc.identifier.citedreferenceScudder, J., et al. ( 1995 ), Hydra: A 3‐dimensional electron and ion hot plasma instrument for the Polar spacecraft of the GGS mission, Space Sci. Rev., 71, 459 – 495.en_US
dc.identifier.citedreferenceSergeev, V. A., Shukhtina, M. A., Rasinkangas, R., Korth, A., Reeves, G. D., Singer, H. J., Thomsen, M. F., and Vagina, L. I. ( 1998 ), Event study of deep energetic particle injections during substorm, J. Geophys. Res., 103 ( A5 ), 9217 – 9234, doi: 10.1029/97JA03686, 1998.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.