Show simple item record

The influence of production mechanisms on pick‐up ion loss at Mars

dc.contributor.authorCurry, S. M.en_US
dc.contributor.authorLiemohn, M.en_US
dc.contributor.authorFang, X.en_US
dc.contributor.authorMa, Y.en_US
dc.contributor.authorEspley, J.en_US
dc.date.accessioned2013-04-08T20:49:42Z
dc.date.available2014-03-03T15:09:25Zen_US
dc.date.issued2013-01en_US
dc.identifier.citationCurry, S. M.; Liemohn, M.; Fang, X.; Ma, Y.; Espley, J. (2013). "The influence of production mechanisms on pick‐up ion loss at Mars." Journal of Geophysical Research: Space Physics 118(1): 554-569. <http://hdl.handle.net/2027.42/97192>en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97192
dc.publisherCambridge University Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherIonizationen_US
dc.subject.otherEscapeen_US
dc.subject.otherPickup Ionsen_US
dc.subject.otherMarsen_US
dc.subject.otherTest Particle Simulationen_US
dc.subject.otherSolar Wind Interaction With Unmagnetized Bodiesen_US
dc.titleThe influence of production mechanisms on pick‐up ion loss at Marsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97192/1/jgra50057.pdf
dc.identifier.doi10.1029/2012JA017665en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceLundin, R., S. Barabash, M. Yamauchi, H. Nilsson, and D. Brain. ( 2011 ). On the relation between plasma escape and the Martian crustal magnetic field, Geophys. Res. Lett., 38 ( 2 ).en_US
dc.identifier.citedreferenceLammer, H., and S. J. Bauer. ( 1991 ). Nonthermal atmospheric escape from Mars and Titan, J. Geophys. Res., 96 ( A2 ), 1819 – 1825.en_US
dc.identifier.citedreferenceLi, L., Y. Zhang, Y. Feng, X. Fang, and Y. Ma. ( 2011 ). Oxygen ion precipitation in the Martian atmosphere and its relation with the crustal magnetic fields, J. Geophys. Res., 116 ( A8 ).en_US
dc.identifier.citedreferenceLichtenegger, H. I. M., H. Lammer, Y. N. Kulikov, S. Kazeminejad, G. H. Molina‐Cuberos, R. Rodrigo, B. Kazeminejad, and G. Kirchengast. ( 2007 ). Effects of low energetic neutral atoms on Martian and Venusian dayside exospheric temperature estimations, Space Sci. Rev., 126 ( 1‐4 ), 469 – 501.en_US
dc.identifier.citedreferenceLiu, Y., A. Nagy, C. Groth, D. De Zeeuw, T. Gombosi, and K. Powell. ( 1999 ). 3D multifluid MHD studies of the solar wind interaction with Mars, Geophys. Res. Lett., 26 ( 17 ), 2689 – 2692.en_US
dc.identifier.citedreferenceLuhmann, J. G., and J. U. Kozyra. ( 1991 ). Dayside pickup oxygen ion precipitation at Venus and Mars spatial distributions energy deposition and consequences, J. Geophys. Res., 96, 5457 – 5467.en_US
dc.identifier.citedreferenceLuhmann, J. G., S. A. Ledvina, J. G. Lyon, and C. T. Russell. ( 2006 ). Venus O + pickup ions: Collected PVO results and expectations for Venus Express, Planet. Space Sci., 54 ( 13‐14 ), 1457 – 1471.en_US
dc.identifier.citedreferenceLundin, R., S. Barabash, M. Holmström, H. Nilsson, M. Yamauchi, E. M. Dubinin, and M. Fraenz. ( 2009 ). Atmospheric origin of cold ion escape from Mars, Geophys. Res. Lett., 36 ( 17 ).en_US
dc.identifier.citedreferenceLundin, R., et al. ( 1989 ). First measurements of the ionospheric plasma escape from Mars, Nature, 341 ( 6243 ), 609 – 612.en_US
dc.identifier.citedreferenceLundin, R., et al. ( 2004 ). Solar wind‐induced atmospheric erosion at Mars: first results from ASPERA‐3 on Mars Express, Science, 305 ( 5692 ), 1933 – 6.en_US
dc.identifier.citedreferenceMa, Y., A. Nagy, I. V. Sokolov, and K. C. Hansen. ( 2004 ). Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109 ( A7 ).en_US
dc.identifier.citedreferenceMa, Y.‐J., and A. F. Nagy. ( 2007 ). Ion escape fluxes from Mars, Geophys. Res. Lett., 34 ( 8 ).en_US
dc.identifier.citedreferenceMcKenna, L., E. Kallio, R. Jarvinen, and V. Afonin. ( 2012 ). Magnetic shadowing of high energy ions at Mars and how this effect can be simulated using a hybrid model, Earth Planet. Space, 64 ( 2 ), 247 – 256.en_US
dc.identifier.citedreferenceModolo, R., G. Chanteur, E. Dubinin, and A. Matthews. ( 2005 ). Influence of the solar EUV flux on the Martian plasma environment, Ann. Geophys., 23, 433 – 444.en_US
dc.identifier.citedreferenceNagy, A., et al. ( 2004 ). The plasma environment of Mars, Space Sci. Rev., 111, 33 – 114.en_US
dc.identifier.citedreferenceNajib, D., A. F. Nagy, G Toth, and Y. Ma. ( 2011 ). Three‐dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars, J. Geophys. Res., 116 ( A5 ).en_US
dc.identifier.citedreferencePowell, K., P. Roe, T. Linde, T. Gombosi, and D. De Zeeuw. ( 1999 ). A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 309.en_US
dc.identifier.citedreferenceRosenbauer, H., et al. ( 1989 ). Ions of Martian origin and plasma sheet in the Martian magnetosphere: initial results of the TAUS experiment, Nature, 341 ( 6243 ), 612 – 614.en_US
dc.identifier.citedreferenceSchunk, R., and A. Nagy. ( 2000 ). Ionospheres, Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferenceSquyres, S. W., et al. ( 2004 ). In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars, Science, 306 ( 5702 ), 1709 – 14.en_US
dc.identifier.citedreferenceStebbings, R. F., A. C. H. Smith, and H. Ehrhardt. ( 1964 ). Charge transfer between oxygen atoms and O + and H + ions, J. Geophys. Res., 69 ( 11 ), 2349 – 2355.en_US
dc.identifier.citedreferenceTerada, N., Y. N. Kulikov, H. Lammer, H. I. Lichtenegger, T. Tanaka, H. Shinagawa, and T. Zhang. ( 2009 ). Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions, Astrobiology, 9 ( 1 ), 55 – 70.en_US
dc.identifier.citedreferenceVerigin, M. I., et al. ( 1991 ). On the problem of the Martian atmosphere dissipation: Phobos 2 TAUS spectrometer results, J. Geophys. Res., 96 ( A11 ), 19,315 – 19,320.en_US
dc.identifier.citedreferenceZhang, M. H. G., J. Luhmann, A. Nagy, J. Spreiter, and S. Stahara. ( 1993 ). Oxygen ionization rates at Mars and Venus: Relative contributions of impact ionization and charge exchange, J. Geophys. Res., 98 ( 2 ), 3311 – 3318.en_US
dc.identifier.citedreferenceAcuna, M. H., et al. ( 1999 ). Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment, Science, 284 ( 5415 ), 790 – 793.en_US
dc.identifier.citedreferenceAndersson, L., R. E. Ergun, and A. I. F. Stewart. ( 2010 ). The combined atmospheric photochemistry and ion tracing code: Reproducing the Viking lander results and initial outflow results, Icarus, 206 ( 1 ), 120 – 129.en_US
dc.identifier.citedreferenceArkani‐Hamed, J. ( 2001 ). A 50‐degree spherical harmonic model of the magnetic field of Mars, J. Geophys. Res., 106, 197 – 208.en_US
dc.identifier.citedreferenceBarabash, S., E. Dubinin, N. Pissarenko, R. Lundin, and C. T. Russell. ( 1991 ). Picked up protons near Mars: Phobos observations, Geophys. Res. Lett., 18 ( 10 ), 1805 – 1808.en_US
dc.identifier.citedreferenceBarabash, S., A. Fedorov, R. Lundin, and J. A. Sauvaud. ( 2007 ). Martian atmospheric erosion rates, Science, 315 ( 5811 ), 501 – 3.en_US
dc.identifier.citedreferenceBauske, R., A. Nagy, T. Gombosi, D. De Zeeuw, K. Powell, and J. Luhmann. ( 1998 ). A three‐dimensional MHD study of solar wind mass loading processes at Venus: Effects of photoionization, electron impact ionization, and charge exchange, J. Geophys. Res., 103 ( A10 ), 625 – 638.en_US
dc.identifier.citedreferenceBoesswetter, A., et al. ( 2007 ). Comparison of plasma data from Aspera‐3/Mars‐Express with a 3‐D hybrid simulation, Ann. Geophys., 25, 1851 – 1864.en_US
dc.identifier.citedreferenceBougher, S. W., and S. Engel. ( 2000 ). Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices, J. Geophys. Res., 105, 669 – 692.en_US
dc.identifier.citedreferenceBrain, D., et al. ( 2010 ). A comparison of global models for the solar wind interaction with Mars, Icarus, 206 ( 1 ), 139 – 151.en_US
dc.identifier.citedreferenceBrecht, S. H., and S. A. Ledvina. ( 2006 ). The solar wind interaction with the Martian ionosphere/atmosphere, Space Sci. Rev., 126 ( 1‐4 ), 15 – 38.en_US
dc.identifier.citedreferenceBrecht, S. H., and S. A. Ledvina. ( 2010 ). The loss of water from Mars: Numerical results and challenges, Icarus, 206 ( 1 ), 164 – 173.en_US
dc.identifier.citedreferenceCarr, M. H. ( 2003 ). Oceans on Mars: An assessment of the observational evidence and possible fate, J. Geophys. Res., 108 ( E5 ).en_US
dc.identifier.citedreferenceChaufray, J. Y., R. Modolo, F. Leblanc, G. Chanteur, R. E. Johnson, and J. G. Luhmann. ( 2007 ). Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space, J. Geophys. Res., 112 ( E9 ).en_US
dc.identifier.citedreferenceCravens, T. E., J. U. Kozyra, A. Nagy, T. Gombosi, and M. Kurtz. ( 1987 ). Electron impact ionization in the vicinity of comets, J. Geophys. Res., 92, 7341 – 7353.en_US
dc.identifier.citedreferenceCravens, T. E., A. Hoppe, and S. A. Ledvina. ( 2002 ). Pickup ions near Mars associated with escaping oxygen atoms, J. Geophys. Res., 107 ( A8 ), 1170 – 1180.en_US
dc.identifier.citedreferenceDubinin, E., M. Frnz, J. Woch, E. Roussos, S. Barabash, R. Lundin, J. D. Winningham, R. A. Frahm, and M. Acua. ( 2006 ). Plasma morphology at Mars. ASPERA‐3 observations, Space Sci. Rev., 126 ( 1‐4 ), 209 – 238.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, A. F. Nagy, Y. Ma, D. L. De Zeeuw, J. U. Kozyra, and T. H. Zurbuchen. ( 2008 ). Pickup oxygen ion velocity space and spatial distribution around Mars, J. Geophys. Res., 113 ( A2 ).en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, A. F. Nagy, J. G. Luhmann, and Y. Ma. ( 2010 ). On the effect of the Martian crustal magnetic field on atmospheric erosion, Icarus, 206 ( 1 ), 130 – 138.en_US
dc.identifier.citedreferenceFedorov, A., et al. ( 2006 ). Structure of the Martian wake, Icarus, 182 ( 2 ), 329 – 336.en_US
dc.identifier.citedreferenceFox, J. L. ( 1993 ). On the escape of oxygen and hydrogen from Mars, Geophys. Res. Lett., 20 ( 17 ), 1847 – 1850.en_US
dc.identifier.citedreferenceFox, J. L. ( 2003 ). Effect of H 2 on the Martian ionosphere: Implications for atmospheric evolution, J. Geophys. Res., 108 ( A6 ).en_US
dc.identifier.citedreferenceFox, J. L., and K. Sung. ( 2001 ). Solar activity variations of the Venus thermosphere/ionosphere, J. Geophys. Res., 106, 305 – 335.en_US
dc.identifier.citedreferenceHarnett, E. M., and R. M. Winglee. ( 2006 ). Three‐dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events, J. Geophys. Res., 111 ( A9 ).en_US
dc.identifier.citedreferenceHunten, D. M. ( 1993 ). Atmospheric evolution of the terrestrial planets, Science, 259 ( 5097 ), 915 – 920.en_US
dc.identifier.citedreferenceJin, H., K. Maezawa, and T. Mukai. ( 2006 ). Effects of charge exchange and electron impact ionization on the formation of the magnetic pileup boundary at Mars, J. Geophys. Res., 111 ( A5 ).en_US
dc.identifier.citedreferenceJohnson, R. E. ( 1994 ). Plasma‐induced sputtering of an atmosphere, Space Sci. Rev., 69 ( 3‐4 ), 215 – 253.en_US
dc.identifier.citedreferenceKallio, E., and R. Jarvinen. ( 2012 ). Kinetic effects on ion escape at Mars and Venus: Hybrid modeling studies, Earth Planet. Space, 64 ( 2 ), 157 – 163.en_US
dc.identifier.citedreferenceKallio, E., and H. Koskinen. ( 1999 ). A test particle simulation of the motion of oxygen ions and solar wind protons near Mars, J. Geophys. Res., 104 ( A1 ), 557 – 579.en_US
dc.identifier.citedreferenceKallio, E., K. Liu, R. Jarvinen, V. Pohjola, and P. Janhunen. ( 2010 ). Oxygen ion escape at Mars in a hybrid model: High energy and low energy ions, Icarus, 206 ( 1 ), 152 – 163.en_US
dc.identifier.citedreferenceKaneda, K., N. Terada, and S. Machida. ( 2009 ). Solar‐wind control of the hot oxygen corona around Mars, J. Geophys. Res., 114 ( E2 ).en_US
dc.identifier.citedreferenceKim, J., A. Nagy, J. L. Fox, and T. E. Cravens. ( 1998 ). Solar cycle variability of hot oxygen atoms at Mars, J. Geophys. Res., 103, 339 – 342.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.