Show simple item record

Evaluation of Proprotein Convertase Subtilisin/Kexin Type 9: Focus on Potential Clinical and Therapeutic Implications for Low‐Density Lipoprotein Cholesterol Lowering

dc.contributor.authorLose, Jennifer M.en_US
dc.contributor.authorDorsch, Michael P.en_US
dc.contributor.authorBleske, Barry E.en_US
dc.date.accessioned2013-04-08T20:49:52Z
dc.date.available2014-05-23T15:04:19Zen_US
dc.date.issued2013-04en_US
dc.identifier.citationLose, Jennifer M.; Dorsch, Michael P.; Bleske, Barry E. (2013). "Evaluation of Proprotein Convertase Subtilisin/Kexin Type 9: Focus on Potential Clinical and Therapeutic Implications for Low‐Density Lipoprotein Cholesterol Lowering." Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy (4): 447-460. <http://hdl.handle.net/2027.42/97226>en_US
dc.identifier.issn0277-0008en_US
dc.identifier.issn1875-9114en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97226
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherResidual Risken_US
dc.subject.otherHyperlipidemiaen_US
dc.subject.otherStatinen_US
dc.subject.otherLow‐Density Lipoproteinen_US
dc.subject.otherCholesterolen_US
dc.subject.otherPCSK9en_US
dc.titleEvaluation of Proprotein Convertase Subtilisin/Kexin Type 9: Focus on Potential Clinical and Therapeutic Implications for Low‐Density Lipoprotein Cholesterol Loweringen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23553812en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97226/1/phar1222.pdf
dc.identifier.doi10.1002/phar.1222en_US
dc.identifier.sourcePharmacotherapy: The Journal of Human Pharmacology and Drug Therapyen_US
dc.identifier.citedreferenceNoguchi T, Kobayashi J, Yagi K, et al. Comparison of effects of bezafibrate and fenofibrate on circulating proprotein convertase subtilisin/kexin type 9 and adipocytokine levels in dyslipidemic subjects with impaired glucose tolerance or type 2 diabetes mellitus: results from a crossover study. Atherosclerosis 2011; 217 ( 1 ): 165 – 70.en_US
dc.identifier.citedreferenceLambert G, Ancellin N, Charlton F, et al. Plasma PCSK9 concentrations correlate with LDL and total cholesterol in diabetic patients and are decreased by fenofibrate treatment. Clin Chem 2008; 54 ( 6 ): 1038 – 45.en_US
dc.identifier.citedreferenceChan DC, Hamilton SJ, Rye KA, et al. Fenofibrate concomitantly decreases serum proprotein convertase subtilisin/kexin type 9 and very‐low‐density lipoprotein particle concentrations in statin‐treated type 2 diabetic patients. Diabetes Obes Metab 2010; 12 ( 9 ): 752 – 6.en_US
dc.identifier.citedreferenceDubuc G, Tremblay M, Pare G, et al. A new method for measurement of total plasma PCSK9: clinical applications. J Lipid Res 2010; 51 ( 1 ): 140 – 9.en_US
dc.identifier.citedreferenceDavignon J, Dubuc G. Statins and ezetimibe modulate plasma proprotein convertase subtilisin kexin‐9 (PCSK9) levels. Trans Am Clin Climatol Assoc 2009; 120: 163 – 73.en_US
dc.identifier.citedreferenceKastelein JJ, Akdim F, Stroes ES, et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N Engl J Med 2008; 358 ( 14 ): 1431 – 43.en_US
dc.identifier.citedreferenceTaylor AJ, Villines TC, Stanek EJ, et al. Extended‐release niacin or ezetimibe and carotid intima‐media thickness. N Engl J Med 2009; 361 ( 22 ): 2113 – 22.en_US
dc.identifier.citedreferenceRossebo AB, Pedersen TR, Boman K, et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med 2008; 359 ( 13 ): 1343 – 56.en_US
dc.identifier.citedreferenceMayne J, Dewpura T, Raymond A, et al. Novel loss‐of‐function PCSK9 variant is associated with low plasma LDL cholesterol in a French‐Canadian family and with impaired processing and secretion in cell culture. Clin Chem 2011; 57 ( 10 ): 1415 – 23.en_US
dc.identifier.citedreferenceLiang H, Chaparro‐Riggers J, Strop P, et al. PCSK9 antagonism reduces LDL‐cholesterol in statin‐treated hypercholesterolemic non‐human primates. J Pharmacol Exp Ther 2012; 340: 228 – 36.en_US
dc.identifier.citedreferenceNi YG, Di Marco S, Condra JH, et al. A PCSK9‐binding antibody that structurally mimics the EGF(A) domain of LDL‐receptor reduces LDL cholesterol in vivo. J Lipid Res 2011; 52 ( 1 ): 78 – 86.en_US
dc.identifier.citedreferenceDias CSA, Smith B, Emery M, et al. A phase 1, randomized, double‐blind, placebo‐controlled, ascending single dose study to evaluate the safety, tolerability and pharmacodynamics of AMG145. Circulation (Suppl) 2011; 124: A10701.en_US
dc.identifier.citedreferenceDias C, Shaywitz A, Cooke B, Uy S, Emery M. Effects of AMG145, a fully human monoclonal antibody against PCSK9, on low‐density lipoprotein cholesterol in subjects taking statins: a phase 1, randomized, double‐blind, placebo‐controlled, ascending study. J Am Coll Cardiol (Suppl) 2012; 59: E1379.en_US
dc.identifier.citedreferenceStein EA, Mellis S, Yancopoulos GD, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med 2012; 366 ( 12 ): 1108 – 18.en_US
dc.identifier.citedreferenceMcKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand AC, Stein EA. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol 2012; 59: 2344 – 53.en_US
dc.identifier.citedreferenceZaid A, Roubtsova A, Essalmani R, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte‐specific low‐density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology 2008; 48 ( 2 ): 646 – 54.en_US
dc.identifier.citedreferenceSullivan D, Olsson A, Scott R, et al. Effect of a monoclonal antibody to PCSK9 on low‐density lipoprotein cholesterol levels in statin‐intolerant patients: the GAUSS randomized trial. JAMA 2012; 308 ( 23 ): 2497 – 506.en_US
dc.identifier.citedreferenceGiugliano R, Desai N, Kohli P, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE‐TIMI 57): a randomized, placebo‐controlled, dose‐ranging, phase 2 study. Lancet 2012; 9858: 2007 – 17.en_US
dc.identifier.citedreferenceKoren M, Scott R, Kim J, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherpay in patients with hypercholesterolaemia (MENDEL): a randomized, double‐blind, placebo‐controlled, phase 2 study. Lancet 2012; 380 ( 9858 ): 1995 – 2006.en_US
dc.identifier.citedreferenceRaal F, Scott R, Somaratne R, et al. Low‐density lipoprotein cholesterol‐lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the reduction of LDL‐C with PCSK9 inhibition in heterozygous familial hypercholesterolemia disorder (RUTHERFORD) randomized trial. Circulation 2012; 126: 2408 – 17.en_US
dc.identifier.citedreferenceRoth E, McKenney J, Hanotin C, Asset G, Stein E. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med 2012; 367: 1891 – 900.en_US
dc.identifier.citedreferenceBrugts JJ, Yetgin T, Hoeks SE, et al. The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta‐analysis of randomised controlled trials. BMJ 2009; 338: b2376.en_US
dc.identifier.citedreferenceCenters for Disease Control (CDC). Vital signs: prevalence, treatment, and control of high levels of low‐density lipoprotein cholesterol–united states, 1999–2002 and 2005–200. MMWR Morb Mortal Wkly Rep 2011; 60 ( 4 ): 109 – 14.en_US
dc.identifier.citedreferenceZhang DW, Lagace TA, Garuti R, et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor‐like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 2007; 282 ( 25 ): 18602 – 12.en_US
dc.identifier.citedreferenceDuff CJ and Hooper NM. PCSK9: an emerging target for treatment of hypercholesterolemia. Expert Opin Ther Targets 2011; 15 ( 2 ): 157 – 68.en_US
dc.identifier.citedreferenceFarnier M. The role of proprotein convertase subtilisin/kexin type 9 in hyperlipidemia: focus on therapeutic implications. Am J Cardiovasc Drugs 2011; 11 ( 3 ): 145 – 52.en_US
dc.identifier.citedreferenceHorton JD, Cohen JC, Hobbs HH. PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res 2009; 50 ( Suppl ): S172 – 7.en_US
dc.identifier.citedreferenceGrefhorst A, McNutt MC, Lagace TA, Horton JD. Plasma PCSK9 preferentially reduces liver LDL receptors in mice. J Lipid Res 2008; 49 ( 6 ): 1303 – 11.en_US
dc.identifier.citedreferenceLanghi C, Le May C, Gmyr V, et al. PCSK9 is expressed in pancreatic delta‐cells and does not alter insulin secretion. Biochem Biophys Res Commun 2009; 390 ( 4 ): 1288 – 93.en_US
dc.identifier.citedreferenceLeblond F, Seidah NG, Precourt LP, Delvin E, Dominguez M, Levy E. Regulation of the proprotein convertase subtilisin/kexin type 9 in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2009; 296 ( 4 ): G805 – 15.en_US
dc.identifier.citedreferenceSchmidt RJ, Beyer TP, Bensch WR, et al. Secreted proprotein convertase subtilisin/kexin type 9 reduces both hepatic and extrahepatic low‐density lipoprotein receptors in vivo. Biochem Biophys Res Commun 2008; 370 ( 4 ): 634 – 40.en_US
dc.identifier.citedreferenceSeidah NG, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis‐regulated convertase 1 (NARC‐1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA 2003; 100 ( 3 ): 928 – 33.en_US
dc.identifier.citedreferenceJeong HJ, Lee HS, Kim KS, Kim YK, Yoon D, Park SW. Sterol‐dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol‐regulatory element binding protein‐2. J Lipid Res 2008; 49 ( 2 ): 399 – 409.en_US
dc.identifier.citedreferenceCostet P, Cariou B, Lambert G, et al. Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element‐binding protein 1c. J Biol Chem 2006; 281 ( 10 ): 6211 – 8.en_US
dc.identifier.citedreferenceMaxwell KN, Soccio RE, Duncan EM, Sehayek E, Breslow JL. Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol‐fed mice. J Lipid Res 2003; 44 ( 11 ): 2109 – 19.en_US
dc.identifier.citedreferenceBrowning JD, Horton JD. Fasting reduces plasma proprotein convertase, subtilisin/kexin type 9 and cholesterol biosynthesis in humans. J Lipid Res 2010; 51 ( 11 ): 3359 – 63.en_US
dc.identifier.citedreferencePersson L, Cao G, Stahle L, et al. Circulating proprotein convertase subtilisin kexin type 9 has a diurnal rhythm synchronous with cholesterol synthesis and is reduced by fasting in humans. Arterioscler Thromb Vasc Biol 2010; 30 ( 12 ): 2666 – 72.en_US
dc.identifier.citedreferenceRadhakrishnan A, Goldstein JL, McDonald JG, Brown MS. Switch‐like control of SREBP‐2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab 2008; 8 ( 6 ): 512 – 21.en_US
dc.identifier.citedreferenceDenis M, Marcinkiewicz J, Zaid A, et al. Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation 2012; 125 ( 7 ): 894 – 901.en_US
dc.identifier.citedreferenceShan L, Pang L, Zhang R, Murgolo NJ, Lan H, Hedrick JA. PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF‐A peptide. Biochem Biophys Res Commun 2008; 375 ( 1 ): 69 – 73.en_US
dc.identifier.citedreferenceTakahashi S, Sakai J, Fujino T, et al. The very low‐density lipoprotein (VLDL) receptor: characterization and functions as a peripheral lipoprotein receptor. J Atheroscler Thromb 2004; 11 ( 4 ): 200 – 8.en_US
dc.identifier.citedreferenceTacken PJ, Hofker MH, Havekes LM, van Dijk KW. Living up to a name: the role of the VLDL receptor in lipid metabolism. Curr Opin Lipidol 2001; 12 ( 3 ): 275 – 9.en_US
dc.identifier.citedreferenceRoubtsova A, Munkonda MN, Awan Z, et al. Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol 2011; 31 ( 4 ): 785 – 91.en_US
dc.identifier.citedreferenceBaass A, Dubuc G, Tremblay M, et al. Plasma PCSK9 is associated with age, sex, and multiple metabolic markers in a population‐based sample of children and adolescents. Clin Chem 2009; 55 ( 9 ): 1637 – 45.en_US
dc.identifier.citedreferenceLakoski SG, Lagace TA, Cohen JC, Horton JD, Hobbs HH. Genetic and metabolic determinants of plasma PCSK9 levels. J Clin Endocrinol Metab 2009; 94 ( 7 ): 2537 – 43.en_US
dc.identifier.citedreferenceAbifadel M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34 ( 2 ): 154 – 6.en_US
dc.identifier.citedreferenceHorton JD, Cohen JC, Hobbs HH. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci 2007; 32 ( 2 ): 71 – 7.en_US
dc.identifier.citedreferenceNaoumova RP, Tosi I, Patel D, et al. Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: long‐term follow‐up and treatment response. Arterioscler Thromb Vasc Biol 2005; 25 ( 12 ): 2654 – 60.en_US
dc.identifier.citedreferenceHumphries SE, Whittall RA, Hubbart CS, et al. Simon Broome Familial Hyperlipidaemia Register Group and Scientific Steering Committee. Genetic causes of familial hypercholesterolaemia in patients in the UK: relation to plasma lipid levels and coronary heart disease risk. J Med Genet 2006; 43 ( 12 ): 943 – 9.en_US
dc.identifier.citedreferenceCunningham D, Danley DE, Geoghegan KF, et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol 2007; 14 ( 5 ): 413 – 9.en_US
dc.identifier.citedreferenceFisher TS, Lo Surdo P, Pandit S, et al. Effects of pH and low density lipoprotein (LDL) on PCSK9‐dependent LDL receptor regulation. J Biol Chem 2007; 282 ( 28 ): 20502 – 12.en_US
dc.identifier.citedreferenceCohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006; 354 ( 12 ): 1264 – 72.en_US
dc.identifier.citedreferenceKotowski IK, Pertsemlidis A, Luke A, et al. A spectrum of PCSK9 alleles contributes to plasma levels of low‐density lipoprotein cholesterol. Am J Hum Genet 2006; 78 ( 3 ): 410 – 22.en_US
dc.identifier.citedreferenceHallman DM, Srinivasan SR, Chen W, Boerwinkle E, Berenson GS. Relation of PCSK9 mutations to serum low‐density lipoprotein cholesterol in childhood and adulthood (from the Bogalusa Heart Study). Am J Cardiol 2007; 100 ( 1 ): 69 – 72.en_US
dc.identifier.citedreferenceBenn M, Nordestgaard BG, Grande P, Schnohr P, Tybjaerg‐Hansen A. PCSK9 R46L, low‐density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta‐analyses. J Am Coll Cardiol 2010; 55 ( 25 ): 2833 – 42.en_US
dc.identifier.citedreferenceChasman DI, Giulianini F, Macfadyen J, Barratt BJ, Nyberg F, Ridker PM. Genetic determinants of statin‐induced low‐density lipoprotein cholesterol reduction: the Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circ Cardiovasc Genet 2012; 5 ( 2 ): 257 – 64.en_US
dc.identifier.citedreferenceCholesterol Treatment Trialists' (CTT) Collaboration, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta‐analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010; 376 ( 9753 ): 1670 – 81.en_US
dc.identifier.citedreferenceAbifadel M, Rabes JP, Devillers M, et al. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat 2009; 30 ( 4 ): 520 – 9.en_US
dc.identifier.citedreferenceZhao Z, Tuakli‐Wosornu Y, Lagace TA, et al. Molecular characterization of loss‐of‐function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet 2006; 79 ( 3 ): 514 – 23.en_US
dc.identifier.citedreferenceHooper AJ, Marais AD, Tanyanyiwa DM, Burnett JR. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a southern African population. Atherosclerosis 2007; 193 ( 2 ): 445 – 8.en_US
dc.identifier.citedreferenceCariou B, Ouguerram K, Zair Y, et al. PCSK9 dominant negative mutant results in increased LDL catabolic rate and familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol 2009; 29 ( 12 ): 2191 – 7.en_US
dc.identifier.citedreferenceFasano T, Cefalu AB, Di Leo E, et al. A novel loss of function mutation of PCSK9 gene in white subjects with low‐plasma low‐density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol 2007; 27 ( 3 ): 677 – 81.en_US
dc.identifier.citedreferenceAi D, Chen C, Han S, et al. Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice. J Clin Invest 2012; 122 ( 4 ): 1262 – 70.en_US
dc.identifier.citedreferenceGouni‐Berthold I, Berthold HK, Gylling H, et al. Effects of ezetimibe and/or simvastatin on LDL receptor protein expression and on LDL receptor and HMG‐CoA reductase gene expression: a randomized trial in healthy men. Atherosclerosis 2008; 198 ( 1 ): 198 – 207.en_US
dc.identifier.citedreferenceMayne J, Dewpura T, Raymond A, et al. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis 2008; 7: 22.en_US
dc.identifier.citedreferenceCostet P, Hoffmann MM, Cariou B, Guyomarc'h Delasalle B, Konrad T, Winkler K. Plasma PCSK9 is increased by fenofibrate and atorvastatin in a non‐additive fashion in diabetic patients. Atherosclerosis 2010; 212 ( 1 ): 246 – 51.en_US
dc.identifier.citedreferenceCareskey HE, Davis RA, Alborn WE, Troutt JS, Cao G, Konrad RJ. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J Lipid Res 2008; 49 ( 2 ): 394 – 8.en_US
dc.identifier.citedreferenceAwan Z, Seidah NG, Macfadyen JG, et al. Rosuvastatin, proprotein convertase subtilisin/kexin type 9 (PCSK9) concentrations, and LDL cholesterol response: the JUPITER trial. Clin Chem 2012; 58: 183 – 9.en_US
dc.identifier.citedreferenceWelder G, Zineh I, Pacanowski MA, Troutt JS, Cao G, Konrad RJ. High‐dose atorvastatin causes a rapid sustained increase in human serum PCSK9 and disrupts its correlation with LDL cholesterol. J Lipid Res 2010; 51 ( 9 ): 2714 – 21.en_US
dc.identifier.citedreferenceMayne J, Raymond A, Chaplin A, et al. Plasma PCSK9 levels correlate with cholesterol in men but not in women. Biochem Biophys Res Commun 2007; 361 ( 2 ): 451 – 6.en_US
dc.identifier.citedreferenceRoberts WC. The rule of 5 and the rule of 7 in lipid‐lowering by statin drugs. Am J Cardiol 1997; 80 ( 1 ): 106 – 7.en_US
dc.identifier.citedreferenceDubuc G, Chamberland A, Wassef H, et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis‐regulated convertase‐1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 2004; 24 ( 8 ): 1454 – 9.en_US
dc.identifier.citedreferenceRashid S, Curtis DE, Garuti R, et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci USA 2005; 102 ( 15 ): 5374 – 9.en_US
dc.identifier.citedreferenceCostet P. Molecular pathways and agents for lowering LDL‐cholesterol in addition to statins. Pharmacol Ther 2010; 126 ( 3 ): 263 – 78.en_US
dc.identifier.citedreferenceTroutt JS, Alborn WE, Cao G, Konrad RJ. Fenofibrate treatment increases human serum proprotein convertase subtilisin kexin type 9 levels. J Lipid Res 2010; 51 ( 2 ): 345 – 51.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.