Show simple item record

Microfluidic wound bandage: Localized oxygen modulation of collagen maturation

dc.contributor.authorLo, Joe F.en_US
dc.contributor.authorBrennan, Martinen_US
dc.contributor.authorMerchant, Zameeren_US
dc.contributor.authorChen, Linen_US
dc.contributor.authorGuo, Shujuanen_US
dc.contributor.authorEddington, David T.en_US
dc.contributor.authorDiPietro, Luisa A.en_US
dc.date.accessioned2013-04-08T20:50:05Z
dc.date.available2014-05-01T14:28:28Zen_US
dc.date.issued2013-03en_US
dc.identifier.citationLo, Joe F.; Brennan, Martin; Merchant, Zameer; Chen, Lin; Guo, Shujuan; Eddington, David T.; DiPietro, Luisa A. (2013). "Microfluidic wound bandage: Localized oxygen modulation of collagen maturation." Wound Repair and Regeneration (2): 226-234. <http://hdl.handle.net/2027.42/97268>en_US
dc.identifier.issn1067-1927en_US
dc.identifier.issn1524-475Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97268
dc.description.abstractRestoring tissue oxygenation has the potential to improve poorly healing wounds with impaired microvasculature. Compared with more established wound therapy using hyperbaric oxygen chambers, topical oxygen therapy has lower cost and better patient comfort, although topical devices have provided inconsistent results. To provide controlled topical oxygen while minimizing moisture loss, a major issue for topical oxygen, we have devised a novel wound bandage based on microfluidic diffusion delivery of oxygen. In addition to modulating oxygen from 0 to 100% in 60 seconds rise time, the microfluidic oxygen bandage provides a conformal seal around the wound. When 100% oxygen is delivered, it penetrates wound tissues as measured in agar phantom and in vivo wounds. Using this microfluidic bandage, we applied the oxygen modulation to 8 mm excisional wounds prepared on diabetic mice. Treatment with the microfluidic bandage demonstrated improved collagen maturity in the wound bed, although only marginal differences were observed in total collagen, microvasculature, and external closure rates. Our results show that proper topical oxygen can improve wound parameters underneath the surface. Because of the ease of fabrication, the oxygen bandage represents an economical yet practical method for oxygen wound research.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleMicrofluidic wound bandage: Localized oxygen modulation of collagen maturationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23438079en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97268/1/wrr12021.pdf
dc.identifier.doi10.1111/wrr.12021en_US
dc.identifier.sourceWound Repair and Regenerationen_US
dc.identifier.citedreferenceLo JF, Sinkala E, Eddington DT. Oxygen gradients for open well cellular cultures via microfluidic substrates. Lab Chip 2010; 10: 2394 – 2401.en_US
dc.identifier.citedreferenceTibbles PM, Edelsberg JS. Hyperbaric‐oxygen therapy. N Engl J Med 1996; 334: 1642 – 1648.en_US
dc.identifier.citedreferenceRoeckl‐Wiedmann I, Bennett M, Kranke P. Systematic review of hyperbaric oxygen in the management of chronic wounds. Br J Surg 2005; 92: 24 – 32.en_US
dc.identifier.citedreferenceSanders AP. Succinate: protective agent against hyperbaric oxygen toxicity. Science 1965; 150: 1830 – 1831.en_US
dc.identifier.citedreferenceSaid HK, Hijjawi J, Roy N, Mogford J, Mustoe T. Transdermal sustained‐delivery oxygen improves epithelial healing in a rabbit ear wound model. Arch Surg 2005; 140: 998 – 1004.en_US
dc.identifier.citedreferenceKalliainen L, Gayle GM, Schlanger R, Sen C. Topical oxygen as an adjunct to wound healing: a clinical case series. Pathophysiology 2003; 9: 81 – 87.en_US
dc.identifier.citedreferenceGordillo GM, Roy S, Khanna S, Schlanger R, Khandelwal S, Phillips G, Sen CK. Topical oxygen therapy induces vascular endothelial growth factor expression and improves closure of clinically presented chronic wounds. Clin Exp Pharmacol Physiol 2008; 35: 957 – 964.en_US
dc.identifier.citedreferenceFries RB, Wallace WA, Roy S, Kuppusamy P, Bergdall V, Gordillo GM, Melvin WS, Sen CK. Dermal excisional wound healing in pigs following treatment. Mutat Res 2005; 579: 172 – 181.en_US
dc.identifier.citedreferenceFischer BH. Topical hyperbaric oxygen treatment of pressure sores and skin ulcers. Lancet 1969; 294: 405 – 409.en_US
dc.identifier.citedreferenceVollmer AP, Probstein RF, Gilbert R, Thorsen T. Development of an integrated microfluidic platform for dynamic oxygen. Lab Chip 2005; 5: 1059 – 1066.en_US
dc.identifier.citedreferenceOppegard SC, Nam K, Carr JR, Skaalure SC, Eddington DT. Modulating temporal and spatial oxygenation over adherent cellular cultures. PLoS ONE 2009; 4: e6891.en_US
dc.identifier.citedreferenceMatthies AM, Low QEH, Lingen MW, DiPietro LA. Neuropilin‐1 participates in wound angiogenesis. Am J Pathol 2002; 160: 289 – 296.en_US
dc.identifier.citedreferenceSaville DJ. Multiple comparison procedures: the practical solution. Am Stat 1990; 44: 174 – 180.en_US
dc.identifier.citedreferenceLevenson SM, Geever EF, Crowley LV, Oates JF, Berard CW, Rosen H. Healing of rat skin wounds. Ann Surg 1965; 161: 293 – 308.en_US
dc.identifier.citedreferenceNiinikoski JHA. Clinical hyperbaric oxygen therapy, wound perfusion, and transcutaneous oximetry. World J Surg 2004; 23: 307 – 311.en_US
dc.identifier.citedreferenceAbidia A, Laden G, Kuhan G, Johnson BF, Wilkinson AR, Renwick PM, Masson EA, McCollum PT. The role of hyperbaric oxygen therapy in ischaemic diabetic lower extremity ulcers: a double‐blind randomised‐controlled trial. Eur J Vasc Endovasc Surg 2003; 25: 513 – 518.en_US
dc.identifier.citedreferenceBotusana IR, Sunkaria VG, Savua O, Catrinad AI, Grünlera J, Lindberga S, Pereirae T, Ylä‐Herttualaf S, Poellingere L, Brismara K, Catrinaa SB. Stabilization of HIF‐1α is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci U S A 2008; 105: 19426 – 19431.en_US
dc.identifier.citedreferenceSivan‐Loukianovaa E, Awada OA, Stepanovica V, Bickenbachb J, Schattemana GC. CD34+ blood cells accelerate vascularization and healing of diabetic mouse skin wounds. J Vasc Res 2003; 40: 368 – 377.en_US
dc.identifier.citedreferenceTrabold O, Wagner S, Wicke C, Scheuenstuhl H, Hussain MZ, Rosen N, Seremetiev A, Becker HD, Hunt TK. Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen 2003; 11: 504 – 509.en_US
dc.identifier.citedreferenceLo JF, Wang Y, Blake A, Yu G, Harvat TA, Jeon H, Oberholzer J, Eddington DT. Islet preconditioning via multimodal microfluidic modulation of intermittent hypoxia. Anal Chem 2012; 84: 1987 – 1993.en_US
dc.identifier.citedreferenceNiethammer P, Grabher C, Look T, Mitchison TJ. A tissue‐scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 2009; 459: 996 – 999.en_US
dc.identifier.citedreferenceShreeniwas R, Koga S, Karakurum M, Pinsky D, Kaiser E, Brett J, Wolitzky BA, Norton C, Plocinski J, Benjamin W. Hypoxia‐mediated induction of endothelial cell interleukin‐1 alpha. An autocrine mechanism promoting expression of leukocyte adhesion molecules on the vessel surface. J Clin Invest 1992; 90: 2333 – 2339.en_US
dc.identifier.citedreferenceCeradini DJ, Gurtner GC. Homing to hypoxia: HIF‐1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med 2005; 15: 57 – 63.en_US
dc.identifier.citedreferenceKnighton DR, Hunt TK, Scheuenstuhl H, Halliday BJ, Werb Z, Banda MJ. Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 1983; 221: 1283 – 1285.en_US
dc.identifier.citedreferencePugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003; 9: 677 – 684.en_US
dc.identifier.citedreferenceCrowther M, Brown NJ, Bishop ET, Lewis CE. Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J Leukoc Biol 2001; 70: 478 – 490.en_US
dc.identifier.citedreferenceO'Toole EA, Marinkovich MP, Peavey CL, Amieva MR, Furthmayr H, Mustoe TA, Woodley DT. Hypoxia increases human keratinocyte motility on connective tissue. J Clin Invest 1997; 100: 2881 – 2891.en_US
dc.identifier.citedreferenceRidgway PF, Ziprin P, Peck DH, Darzi AW. Hypoxia increases reepithelialization via an αvβ6‐dependent pathway. Wound Repair Regen 2005; 13: 158 – 164.en_US
dc.identifier.citedreferenceMurrell GA, Francis MJ, Bromley L. Modulation of fibroblast proliferation by oxygen free radicals. Biochem J 1990; 265: 659 – 665.en_US
dc.identifier.citedreferenceBradley TR, Hodgson GS, Rosendaal M. The effect of oxygen tension on haemopoietic and fibroblast cell proliferation in vitro. J Cell Physiol 1978; 97: 517 – 522.en_US
dc.identifier.citedreferenceIkeda S, Yamaoka‐Tojo M, Hilenski L, Patrushev NA, Anwar GM, Quinn MT, Ushio‐Fukai M. IQGAP1 regulates reactive oxygen species‐dependent endothelial cell migration through interacting with Nox2. Arterioscler Thromb Vasc Biol 2005; 25: 2295 – 2300.en_US
dc.identifier.citedreferenceHunt TK, Pai MP. The effect of varying ambient oxygen tensions on wound metabolism and collagen synthesis. Surg Gynecol Obstet 1972; 135: 561 – 567.en_US
dc.identifier.citedreferenceGibson DR, Angeles AP, Hunt TK. Increased oxygen tension on wound metabolism and collagen synthesis. Surg Forum 1997; 48: 696 – 699.en_US
dc.identifier.citedreferenceFu MX, Knecht KJ, Thorpe SR, Baynes JW. Role of oxygen in cross‐linking and chemical modification of collagen by glucose. Diabetes 1992; 41 ( Suppl. 2 ): 42 – 48.en_US
dc.identifier.citedreferenceOhkubo Y, Kishikawa H, Arakia E, Miyata T, Isami S, Motoyoshi S, Kojima Y, Furuyoshi N, Shichiri M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non‐insulin‐dependent diabetes mellitus: a randomized prospective 6‐year study. Diabetes Res Clin Pract 1995; 28: 103 – 117.en_US
dc.identifier.citedreferenceLerman OZ, Galiano RD, Armour M, Levine JP, Gurtner GC. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am J Pathol 2003; 162: 303 – 312.en_US
dc.identifier.citedreferenceSoriano FG, Virág L, Jagtap P, Szabó E, Mabley JG, Liaudet L, Marton A, Hoyt DG, Murthy KGK, Salzman AL, Southan GJ, Szabó C. Diabetic endothelial dysfunction: the role of poly(ADP‐ribose) polymerase activation. Nat Med 2001; 7: 108 – 113.en_US
dc.identifier.citedreferenceGoren I, Kämpfer H, Podda M, Pfeilschifter J, Frank S. Leptin and wound inflammation in diabetic ob/ob mice: differential regulation of neutrophil and macrophage influx and a potential role for the scab as a sink for inflammatory cells and mediators. Diabetes 2003; 52: 2821 – 2832.en_US
dc.identifier.citedreferenceGaliano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, Bunting S, Steinmetz HG, Gurtner GC. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow‐derived cells. Am J Pathol 2004; 164: 1935 – 1947.en_US
dc.identifier.citedreferenceBaynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40: 405 – 412.en_US
dc.identifier.citedreferenceJeffcoate WJ, Harding KG. Diabetic foot ulcers. Lancet 2003; 361: 1545 – 1551.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.