Show simple item record

Altered locus coeruleus–norepinephrine function following single prolonged stress

dc.contributor.authorGeorge, Sophie A.en_US
dc.contributor.authorKnox, Dayanen_US
dc.contributor.authorCurtis, Andre L.en_US
dc.contributor.authorAldridge, J. Wayneen_US
dc.contributor.authorValentino, Rita J.en_US
dc.contributor.authorLiberzon, Israelen_US
dc.date.accessioned2013-04-08T20:50:07Z
dc.date.available2014-05-01T14:28:28Zen_US
dc.date.issued2013-03en_US
dc.identifier.citationGeorge, Sophie A.; Knox, Dayan; Curtis, Andre L.; Aldridge, J. Wayne; Valentino, Rita J.; Liberzon, Israel (2013). "Altered locus coeruleus–norepinephrine function following single prolonged stress." European Journal of Neuroscience 37(6): 901-909. <http://hdl.handle.net/2027.42/97273>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97273
dc.description.abstractData from preclinical and clinical studies have implicated the norepinephrine system in the development and maintenance of post‐traumatic stress disorder. The primary source of norepinephrine in the forebrain is the locus coeruleus ( LC ); however, LC activity cannot be directly measured in humans, and previous research has often relied upon peripheral measures of norepinephrine to infer changes in central LC –norepinephrine function. To directly assess LC –norepinephrine function, we measured single‐unit activity of LC neurons in a validated rat model of post‐traumatic stress disorder – single prolonged stress ( SPS ). We also examined tyrosine hydroxylase mRNA levels in the LC of SPS and control rats as an index of norepinephrine utilisation. For electrophysiological recordings, 92 LC neurons were identified from 19 rats ( SPS , 12; control, 7), and spontaneous and evoked responses to a noxious event (paw compression) were recorded. Baseline and restraint stress‐evoked tyrosine hydroxylase mRNA expression levels were measured in SPS and control rats ( n  = 16 per group) in a separate experiment. SPS rats showed lower spontaneous activity but higher evoked responses, leading to an enhanced signal‐to‐noise ratio of LC neurons, accompanied by impaired recovery from post‐stimulus inhibition. In concert, tyrosine hydroxylase mRNA expression in the LC of SPS rats tended to be lower at baseline, but was exaggerated following restraint stress. These data demonstrate persistent changes in LC function following stress/trauma in a rat model of post‐traumatic stress, as measured by differences in both the electrophysiological properties of LC neurons and tyrosine hydroxylase mRNA transcription. Single unit activity of LC neurons and TH mRNA levels were measured in the S ingle P rolonged S tress model of P ost‐traumatic stress disorder. SPS decreased rates of spontaneous discharge, exaggerated phasic responses of LC neurons and augmented stress‐enhanced TH mRNA expression. These data demonstrate sustained LC ‐ NE system abnormalities in SPS , providing an opportunity to study the interaction between LC ‐ NE system, and other PTSD ‐like physiological and behavioral changes seen in this model.en_US
dc.publisherAmerican Psychiatric Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAnimal Modelsen_US
dc.subject.otherPost‐Traumatic Stressen_US
dc.subject.otherNoradrenergicen_US
dc.subject.otherTyrosine Hydroxylaseen_US
dc.subject.otherRaten_US
dc.titleAltered locus coeruleus–norepinephrine function following single prolonged stressen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23279008en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97273/1/ejn12095.pdf
dc.identifier.doi10.1111/ejn.12095en_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceRichard, F., Faucon‐Biguet, N., Labatut, R., Rollet, D., Mallet, J. & Buda, M. ( 1988 ) Modulation of tyrosine hydroxylase gene expression in rat brain and adrenals by exposure to cold. J. Neurosci. Res., 20, 32 – 37.en_US
dc.identifier.citedreferencePavcovich, L.A., Cancela, L.M., Volosin, M., Molina, V.A. & Ramirez, O.A. ( 1990 ) Chronic stress‐induced changes in locus coeruleus neuronal activity. Brain Res. Bull., 24, 293 – 296.en_US
dc.identifier.citedreferencePerry, B.D., Southwick, S.M., Yehuda, R. & Giller, E.L. ( 1990 ) Adrenergic Receptor Regulation in Post‐traumatic Stress Disorder. American Psychiatric Publishing, Washington, DC.en_US
dc.identifier.citedreferencePitman, R.K., Rasmusson, A.M., Koenen, K.C., Shin, L.M., Orr, S.P., Gilbertson, M.W., Milad, M.R. & Liberzon, I. ( 2012 ) Biological studies of post‐traumatic stress disorder. Nat. Rev. Neurosci., 13, 769 – 787.en_US
dc.identifier.citedreferenceRaskind, M.A., Peskind, E.R., Hoff, D.J., Hart, K.L., Holmes, H.A., Warren, D., Shofer, J., O'Connell, J., Taylor, F., Gross, C., Rohde, K. & McFall, M.E. ( 2007 ) A parallel group placebo controlled study of prazosin for trauma nightmares and sleep disturbance in combat veterans with post‐traumatic stress disorder. Biol. Psychiatry, 61, 928 – 934.en_US
dc.identifier.citedreferenceRusnak, M., Zorad, S., Buckendahl, P., Sabban, E.L. & Kvetnansky, R. ( 1998 ) Tyrosine hydroxylase mRNA levels in locus ceruleus of rats during adaptation to long‐term immobilization stress exposure. Mol. Chem. Neuropathol., 33, 249 – 258.en_US
dc.identifier.citedreferenceSands, S.A., Guerra, V. & Morilak, D.A. ( 2000 ) Changes in tyrosine hydroxylase mRNA expression in the rat locus coeruleus following acute or chronic treatment with valproic acid. Neuropsychopharmacol., 22, 27 – 35.en_US
dc.identifier.citedreferenceSawchenko, P.E. & Swanson, L.W. ( 1982 ) The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res., 257, 275 – 325.en_US
dc.identifier.citedreferenceSimson, P.E. & Weiss, J.M. ( 1988 ) Altered activity of the locus coeruleus in an animal model of depression. Neuropsychopharmacol., 1, 287 – 295.en_US
dc.identifier.citedreferenceSimson, P.E. & Weiss, J.M. ( 1989 ) Blockade of alpha 2‐adrenergic receptors, but not blockade of gamma‐aminobutyric acidA, serotonin, or opiate receptors, augments responsiveness of locus coeruleus neurons to excitatory stimulation. Neuropharmacology, 28, 651 – 660.en_US
dc.identifier.citedreferenceSimson, P.E., Cierpial, M.A., Heyneman, L.E. & Weiss, J.M. ( 1988 ) Pertussis toxin blocks the effects of alpha 2‐agonists and antagonists on locus coeruleus activity in vivo. Neurosci. Lett., 89, 361 – 366.en_US
dc.identifier.citedreferenceSmith, M.A., Brady, L.S., Glowa, J., Gold, P.W. & Herkenham, M. ( 1991 ) Effects of stress and adrenalectomy on tyrosine hydroxylase mRNA levels in the locus ceruleus by in situ hybridization. Brain Res., 544, 26 – 32.en_US
dc.identifier.citedreferenceSouthwick, S.M., Krystal, J.H., Morgan, C.A., Johnson, D., Nagy, L.M., Nicolaou, A., Heninger, G.R. & Charney, D.S. ( 1993 ) Abnormal noradrenergic function in posttraumatic stress disorder. Arch. Gen. Psychiatry, 50, 266 – 274.en_US
dc.identifier.citedreferenceSouthwick, S.M., Morgan, C.A., Bremner, J.D., Grillon, C.G., Krystal, J.H. & Nagy, L.M. (Eds) ( 1997 ) Neuroendocrine Alterations in Posttraumatic Stress Disorder. New York Academy of Sciences, New York.en_US
dc.identifier.citedreferenceStone, E.A., Freedman, L.S. & Morgano, L.E. ( 1978 ) Brain and adrenal tyrosine hydroxylase activity after chronic footshock stress. Pharmacol. Biochem. Behav., 9, 551 – 553.en_US
dc.identifier.citedreferenceThierry, A.M., Javoy, F., Glowinski, J. & Kety, S.S. ( 1968 ) Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. I. Modifications of norepinephrine turnover. J. Pharmacol. Exp. Ther., 163, 163 – 171.en_US
dc.identifier.citedreferenceValentino, R.J. & Foote, S.L. ( 1988 ) Corticotropin‐releasing hormone increases tonic but not sensory‐evoked activity of noradrenergic locus coeruleus neurons in unanesthetized rats. J. Neurosci., 8, 1016 – 1025.en_US
dc.identifier.citedreferenceWang, H.T., Han, F. & Shi, Y.X. ( 2009 ) Activity of the 5‐HT1A receptor is involved in the alteration of glucocorticoid receptor in hippocampus and corticotropin‐releasing factor in hypothalamus in SPS rats. Int. J. Mol. Med., 24, 227 – 231.en_US
dc.identifier.citedreferenceWatanabe, Y., McKittrick, C.R., Blanchard, D.C., Blanchard, R.J., McEwen, B.S. & Sakai, R.R. ( 1995 ) Effects of chronic social stress on tyrosine hydroxylase mRNA and protein levels. Brain Res. Mol. Brain Res., 32, 176 – 180.en_US
dc.identifier.citedreferenceWest, C.H., Ritchie, J.C. & Weiss, J.M. ( 2010 ) Paroxetine‐induced increase in activity of locus coeruleus neurons in adolescent rats: implication of a countertherapeutic effect of an antidepressant. Neuropsychopharmacol., 35, 1653 – 1663.en_US
dc.identifier.citedreferenceWilliams, T.J. & Clarke, D.E. ( 1995 ) Characterization of alpha 1‐adrenoceptors mediating vasoconstriction to noradrenaline and nerve stimulation in the isolated perfused mesentery of rat. Br. J. Pharmacol., 114, 531 – 536.en_US
dc.identifier.citedreferenceYamamoto, S., Morinobu, S., Fuchikami, M., Kurata, A., Kozuru, T. & Yamawaki, S. ( 2008 ) Effects of single prolonged stress and D‐cycloserine on contextual fear extinction and hippocampal NMDA receptor expression in a rat model of PTSD. Neuropsychopharmacol., 33, 2108 – 2116.en_US
dc.identifier.citedreferenceYamamoto, S., Morinobu, S., Takei, S., Fuchikami, M., Matsuki, A., Yamawaki, S. & Liberzon, I. ( 2009 ) Single prolonged stress: toward an animal model of posttraumatic stress disorder. Depress. Anxiety, 26, 1110 – 1117.en_US
dc.identifier.citedreferenceYehuda, R., Giller, E.L. Jr. & Mason, J.W. ( 1993 ) Psychoneuroendocrine assessment of posttraumatic stress disorder: current progress and new directions. Prog. Neuropsychopharmacol. Biol. Psychiatry, 17, 541 – 550.en_US
dc.identifier.citedreferenceZigmond, R.E., Schon, F. & Iversen, L.L. ( 1974 ) Increased tyrosine hydroxylase activity in the locus coeruleus of rat brain stem after reserpine treatment and cold stress. Brain Res., 70, 547 – 552.en_US
dc.identifier.citedreferenceAbercrombie, E.D. & Jacobs, B.L. ( 1987 ) Single‐unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and nonstressful stimuli. J. Neurosci., 7, 2837 – 2843.en_US
dc.identifier.citedreferenceAbercrombie, E.D., Keller, R.W. Jr. & Zigmond, M.J. ( 1988 ) Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: pharmacological and behavioral studies. Neuroscience, 27, 897 – 904.en_US
dc.identifier.citedreferenceAdamec, R., Muir, C., Grimes, M. & Pearcey, K. ( 2007 ) Involvement of noradrenergic and corticoid receptors in the consolidation of the lasting anxiogenic effects of predator stress. Behav. Brain Res., 179, 192 – 207.en_US
dc.identifier.citedreferenceAdell, A., Garcia‐Marquez, C., Armario, A. & Gelpi, E. ( 1988 ) Chronic stress increases serotonin and noradrenaline in rat brain and sensitizes their responses to a further acute stress. J. Neurochem., 50, 1678 – 1681.en_US
dc.identifier.citedreferenceAghajanian, G.K. & VanderMaelen, C.P. ( 1982 ) alpha 2‐Adrenoceptor‐mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science, 215, 1394 – 1396.en_US
dc.identifier.citedreferenceAmerican Psychiatric Association ( 1994 ) Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Press, Washington, DC.en_US
dc.identifier.citedreferenceAngulo, J.A., Printz, D., Ledoux, M. & McEwen, B.S. ( 1991 ) Isolation stress increases tyrosine hydroxylase mRNA in the locus coeruleus and midbrain and decreases proenkephalin mRNA in the striatum and nucleus accumbens. Brain Res. Mol. Brain Res., 11, 301 – 308.en_US
dc.identifier.citedreferenceAnisman, H. & Zacharko, R.M. ( 1990 ) Multiple neurochemical and behavioral consequences of stressors: implications for depression. Pharmacol. Ther., 46, 119 – 136.en_US
dc.identifier.citedreferenceArima, J., Kubo, C., Ishibashi, H. & Akaike, N. ( 1998 ) alpha2‐Adrenoceptor‐mediated potassium currents in acutely dissociated rat locus coeruleus neurones. J. Physiol., 508, 57 – 66.en_US
dc.identifier.citedreferenceAston‐Jones, G. & Cohen, J.D. ( 2005 ) An integrative theory of locus coeruleus–norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci., 28, 403 – 450.en_US
dc.identifier.citedreferenceAston‐Jones, G., Valentino, R.J., Van Bockstaele, E. & Meyerson, A.T. (Eds) ( 1994 ) Locus Coeruleus, Stress, and PTSD: Neurobiological and Clinical Parallels. American Psychiatric Press, Washington, DC.en_US
dc.identifier.citedreferenceBerridge, C.W. & Waterhouse, B.D. ( 2003 ) The locus coeruleus–noradrenergic system: modulation of behavioral state and state‐dependent cognitive processes. Brain Res. Brain Res. Rev., 42, 33 – 84.en_US
dc.identifier.citedreferenceBracha, H.S., Garcia‐Rill, E., Mrak, R.E. & Skinner, R. ( 2005 ) Postmortem locus coeruleus neuron count in three American veterans with probable or possible war‐related PTSD. J. Neuropsychiatry Clin. Neurosci., 17, 503 – 509.en_US
dc.identifier.citedreferenceCedarbaum, J.M. & Aghajanian, G.K. ( 1978 ) Activation of locus coeruleus neurons by peripheral stimuli: modulation by a collateral inhibitory mechanism. Life Sci., 23, 1383 – 1392.en_US
dc.identifier.citedreferenceChiang, C. & Aston‐Jones, G. ( 1993 ) Response of locus coeruleus neurons to footshock stimulation is mediated by neurons in the rostral ventral medulla. Neuroscience, 53, 705 – 715.en_US
dc.identifier.citedreferenceConti, L.H. & Foote, S.L. ( 1996 ) Reciprocal cross‐desensitization of locus coeruleus electrophysiological responsivity to corticotropin‐releasing factor and stress. Brain Res., 722, 19 – 29.en_US
dc.identifier.citedreferenceCurtis, A.L., Pavcovich, L.A., Grigoriadis, D.E. & Valentino, R.J. ( 1995 ) Previous stress alters corticotropin‐releasing factor neurotransmission in the locus coeruleus. Neuroscience, 65, 541 – 550.en_US
dc.identifier.citedreferenceCurtis, A.L., Leiser, S.C., Snyder, K. & Valentino, R.J. ( 2012 ) Predator stress engages corticotropin‐releasing factor and opioid systems to alter the operating mode of locus coeruleus norepinephrine neurons. Neuropharmacology, 62, 1737 – 1745.en_US
dc.identifier.citedreferenceDe Bellis, M.D., Baum, A.S., Birmaher, B. & Ryan, N.D. ( 1997 ) Urinary catecholamine excretion in childhood overanxious and posttraumatic stress disorders. Ann. NY Acad. Sci., 821, 451 – 455.en_US
dc.identifier.citedreferenceDing, J., Han, F. & Shi, Y. ( 2010 ) Single‐prolonged stress induces apoptosis in the amygdala in a rat model of post‐traumatic stress disorder. J. Psychiatr. Res., 44, 48 – 55.en_US
dc.identifier.citedreferenceDunn, A.J. & Berridge, C.W. ( 1987 ) Corticotropin‐releasing factor administration elicits a stress‐like activation of cerebral catecholaminergic systems. Pharmacol. Biochem. Behav., 27, 685 – 691.en_US
dc.identifier.citedreferenceFlagel, S.B., Watson, S.J., Robinson, T.E. & Akil, H. ( 2007 ) Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats. Psychopharmacology, 191, 599 – 607.en_US
dc.identifier.citedreferenceFoote, S.L., Aston‐Jones, G. & Bloom, F.E. ( 1980 ) Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc. Natl. Acad. Sci. USA, 77, 3033 – 3037.en_US
dc.identifier.citedreferenceFoote, S.L., Bloom, F.E. & Aston‐Jones, G. ( 1983 ) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol. Rev., 63, 844 – 914.en_US
dc.identifier.citedreferenceGil, T., Calev, A., Greenberg, D., Kugelmass, S. & Lerer, B. ( 1990 ) Cognitive functioning in post‐traumatic stress disorder. J. Trauma Stress, 3, 29 – 45.en_US
dc.identifier.citedreferenceGrant, M.M. & Weiss, J.M. ( 2001 ) Effects of chronic antidepressant drug administration and electroconvulsive shock on locus coeruleus electrophysiologic activity. Biol. Psychiatry, 49, 117 – 129.en_US
dc.identifier.citedreferenceIrwin, J., Ahluwalia, P. & Anisman, H. ( 1986 ) Sensitization of norepinephrine activity following acute and chronic footshock. Brain Res., 379, 98 – 103.en_US
dc.identifier.citedreferenceJedema, H.P. & Grace, A.A. ( 2003 ) Chronic exposure to cold stress alters electrophysiological properties of locus coeruleus neurons recorded in vitro. Neuropsychopharmacol., 28, 63 – 72.en_US
dc.identifier.citedreferenceJedema, H.P., Finlay, J.M., Sved, A.F. & Grace, A.A. ( 2001 ) Chronic cold exposure potentiates CRH‐evoked increases in electrophysiologic activity of locus coeruleus neurons. Biol. Psychiatry, 49, 351 – 359.en_US
dc.identifier.citedreferenceKabbaj, M., Devine, D.P., Savage, V.R. & Akil, H. ( 2000 ) Neurobiological correlates of individual differences in novelty‐seeking behavior in the rat: differential expression of stress‐related molecules. J. Neurosci., 20, 6983 – 6988.en_US
dc.identifier.citedreferenceKhan, S. & Liberzon, I. ( 2004 ) Topiramate attenuates exaggerated acoustic startle in an animal model of PTSD. Psychopharmacology, 172, 225 – 229.en_US
dc.identifier.citedreferenceKnox, D., Perrine, S.A., George, S.A., Galloway, M.P. & Liberzon, I. ( 2010 ) Single prolonged stress decreases glutamate, glutamine, and creatine concentrations in the rat medial prefrontal cortex. Neurosci. Lett., 480, 16 – 20.en_US
dc.identifier.citedreferenceKnox, D., George, S.A., Fitzpatrick, C.J., Rabinak, C.A., Maren, S. & Liberzon, I. ( 2012a ) Single prolonged stress disrupts retention of extinguished fear in rats. Learn. Mem., 19, 43 – 49.en_US
dc.identifier.citedreferenceKnox, D., Nault, T., Henderson, C. & Liberzon, I. ( 2012b ) Glucocorticoid receptors and extinction retention deficits in the single prolonged stress model. Neuroscience, 223, 163 – 173.en_US
dc.identifier.citedreferenceKohda, K., Harada, K., Kato, K., Hoshino, A., Motohashi, J., Yamaji, T., Morinobu, S., Matsuoka, N. & Kato, N. ( 2007 ) Glucocorticoid receptor activation is involved in producing abnormal phenotypes of single‐prolonged stress rats: a putative post‐traumatic stress disorder model. Neuroscience, 148, 22 – 33.en_US
dc.identifier.citedreferenceKoob, G.F. ( 1999 ) Corticotropin‐releasing factor, norepinephrine, and stress. Biol. Psychiatry, 46, 1167 – 1180.en_US
dc.identifier.citedreferenceKorf, J., Aghajanian, G.K. & Roth, R.H. ( 1973 ) Increased turnover of norepinephrine in the rat cerebral cortex during stress: role of the locus coeruleus. Neuropharmacology, 12, 933 – 938.en_US
dc.identifier.citedreferenceKosten, T.R., Mason, J.W., Giller, E.L., Ostroff, R.B. & Harkness, L. ( 1987 ) Sustained urinary norepinephrine and epinephrine elevation in post‐traumatic stress disorder. Psychoneuroendocrino., 12, 13 – 20.en_US
dc.identifier.citedreferenceKozlovsky, N., Matar, M.A., Kaplan, Z., Zohar, J. & Cohen, H. ( 2009 ) A distinct pattern of intracellular glucocorticoid‐related responses is associated with extreme behavioral response to stress in an animal model of post‐traumatic stress disorder. Eur. Neuropsychopharmacol., 19, 759 – 771.en_US
dc.identifier.citedreferenceLiberzon, I., Krstov, M. & Young, E.A. ( 1997 ) Stress–restress: effects on ACTH and fast feedback. Psychoneuroendocrino., 22, 443 – 453.en_US
dc.identifier.citedreferenceLiberzon, I., Abelson, J.L., Flagel, S.B., Raz, J. & Young, E.A. ( 1999a ) Neuroendocrine and psychophysiologic responses in PTSD: a symptom provocation study. Neuropsychopharmacol., 21, 40 – 50.en_US
dc.identifier.citedreferenceLiberzon, I., Lopez, J.F., Flagel, S.B., Vazquez, D.M. & Young, E.A. ( 1999b ) Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: relevance to post‐traumatic stress disorder. J. Neuroendocrinol., 11, 11 – 17.en_US
dc.identifier.citedreferenceMana, M.J. & Grace, A.A. ( 1997 ) Chronic cold stress alters the basal and evoked electrophysiological activity of rat locus coeruleus neurons. Neuroscience, 81, 1055 – 1064.en_US
dc.identifier.citedreferenceMcFall, M.E., Murburg, M.M., Ko, G.N. & Veith, R.C. ( 1990 ) Autonomic responses to stress in Vietnam combat veterans with posttraumatic stress disorder. Biol. Psychiatry, 27, 1165 – 1175.en_US
dc.identifier.citedreferenceMcFall, M.E., Veith, R.C. & Murburg, M.M. ( 1992 ) Basal sympathoadrenal function in posttraumatic distress disorder. Biol. Psychiatry, 31, 1050 – 1056.en_US
dc.identifier.citedreferenceMcGaugh, J.L. & Roozendaal, B. ( 2002 ) Role of adrenal stress hormones in forming lasting memories in the brain. Curr. Opin. Neurobiol., 12, 205 – 210.en_US
dc.identifier.citedreferenceMilad, M.R., Wright, C.I., Orr, S.P., Pitman, R.K., Quirk, G.J. & Rauch, S.L. ( 2007 ) Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol. Psychiatry, 62, 446 – 454.en_US
dc.identifier.citedreferenceMurburg, M.M., McFall, M.E., Lewis, N. & Veith, R.C. ( 1995 ) Plasma norepinephrine kinetics in patients with posttraumatic stress disorder. Biol. Psychiatry, 38, 819 – 825.en_US
dc.identifier.citedreferenceNisenbaum, L.K., Zigmond, M.J., Sved, A.F. & Abercrombie, E.D. ( 1991 ) Prior exposure to chronic stress results in enhanced synthesis and release of hippocampal norepinephrine in response to a novel stressor. J. Neurosci., 11, 1478 – 1484.en_US
dc.identifier.citedreferenceOlson, V.G., Rockett, H.R., Reh, R.K., Redila, V.A., Tran, P.M., Venkov, H.A., Defino, M.C., Hague, C., Peskind, E.R., Szot, P. & Raskind, M.A. ( 2011 ) The role of norepinephrine in differential response to stress in an animal model of posttraumatic stress disorder. Biol. Psychiatry, 70, 441 – 448.en_US
dc.identifier.citedreferenceOrr, S.P., Metzger, L.J. & Pitman, R.K. ( 2002 ) Psychophysiology of post‐traumatic stress disorder. Psychiatr. Clin. North Am., 25, 271 – 293.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.