Show simple item record

Multi‐system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice‐water phantom

dc.contributor.authorMalyarenko, Dariyaen_US
dc.contributor.authorGalbán, Craig J.en_US
dc.contributor.authorLondy, Frank J.en_US
dc.contributor.authorMeyer, Charles R.en_US
dc.contributor.authorJohnson, Timothy D.en_US
dc.contributor.authorRehemtulla, Alnawazen_US
dc.contributor.authorRoss, Brian D.en_US
dc.contributor.authorChenevert, Thomas L.en_US
dc.date.accessioned2013-05-02T19:34:54Z
dc.date.available2014-07-01T15:53:27Zen_US
dc.date.issued2013-05en_US
dc.identifier.citationMalyarenko, Dariya; Galbán, Craig J. ; Londy, Frank J.; Meyer, Charles R.; Johnson, Timothy D.; Rehemtulla, Alnawaz; Ross, Brian D.; Chenevert, Thomas L. (2013). "Multiâ system repeatability and reproducibility of apparent diffusion coefficient measurement using an iceâ water phantom." Journal of Magnetic Resonance Imaging 37(5): 1238-1246. <http://hdl.handle.net/2027.42/97442>en_US
dc.identifier.issn1053-1807en_US
dc.identifier.issn1522-2586en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97442
dc.description.abstractPurpose: To determine quantitative quality control procedures to evaluate technical variability in multi‐center measurements of the diffusion coefficient of water as a prerequisite to use of the biomarker apparent diffusion coefficient (ADC) in multi‐center clinical trials. Materials and Methods: A uniform data acquisition protocol was developed and shared with 18 participating test sites along with a temperature‐controlled diffusion phantom delivered to each site. Usable diffusion weighted imaging data of ice water at five b‐values were collected on 35 clinical MRI systems from three vendors at two field strengths (1.5 and 3 Tesla [T]) and analyzed at a central processing site. Results: Standard deviation of bore‐center ADCs measured across 35 scanners was <2%; error range: −2% to +5% from literature value. Day‐to‐day repeatability of the measurements was within 4.5%. Intra‐exam repeatability at the phantom center was within 1%. Excluding one outlier, inter‐site reproducibility of ADC at magnet isocenter was within 3%, although variability increased for off‐center measurements. Significant (>10%) vendor‐specific and system‐specific spatial nonuniformity ADC bias was detected for the off‐center measurement that was consistent with gradient nonlinearity. Conclusion: Standardization of DWI protocol has improved reproducibility of ADC measurements and allowed identifying spatial ADC nonuniformity as a source of error in multi‐site clinical studies. J. Magn. Reson. Imaging 2013;37:1238–1246. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherMRIen_US
dc.subject.otherDiffusionen_US
dc.subject.otherPhantomen_US
dc.subject.otherIce‐Wateren_US
dc.subject.otherQuality Controlen_US
dc.subject.otherGradient Nonlinearityen_US
dc.titleMulti‐system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice‐water phantomen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan Hospitals, 1500 E. Medical Center Drive, UHB2 Room A209, Ann Arbor, MI 48109‐5030en_US
dc.contributor.affiliationumDepartment of Radiology, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationumDepartment of Biostatistics, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationumDepartments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.identifier.pmid23023785en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97442/1/23825_ftp.pdf
dc.identifier.doi10.1002/jmri.23825en_US
dc.identifier.sourceJournal of Magnetic Resonance Imagingen_US
dc.identifier.citedreferenceCollins DJ, Blackledge M. Techniques and optimization. In: Koh DM, Thoeny HC, editors. Diffusion‐weighted MR imaging: applications in the body. New York: Springer‐Verlag; 2010. p 19 – 32.en_US
dc.identifier.citedreferenceSaritas EU, Lee JH, Nishimura DG. SNR dependence of optimal parameters for apparent diffusion coefficient measurements. IEEE Trans Med Imaging 2011; 30: 424 – 437.en_US
dc.identifier.citedreferenceOgura A, Hayakawa K, Miyuati T, Maeda F. Imaging parameter effects in apparent diffusion coefficient determination of magnetic resonance imaging. Eur J Radiol 2011; 77: 185 – 188.en_US
dc.identifier.citedreferenceZhu T, Hu R, Qiu X, Taylor M, et al. Quantification of accuracy and precision of multi‐center DTI measurements: a diffusion phantom and human brain study. Neuroimage 2011; 56: 1398 – 1411.en_US
dc.identifier.citedreferenceDelakis I, Moore EM, Leach MO, De Wilde JP. Developing a quality control protocol for diffusion imaging on a clinical MRI system. Phys Med Biol 2004; 49: 1409 – 1422.en_US
dc.identifier.citedreferenceChenevert TL, Craig JG, Ivancevic MK, et al. Diffusion coefficient measurement using temperature controlled fluid for quality control in multi‐center studies. J Magn Reson Imaging 2011; 34: 983 – 987.en_US
dc.identifier.citedreferenceTofts PS, Lloyd D, Clark CA, et al. Test liquids for quantitative MRI measurements of self‐diffusion coefficient in vivo. Magn Reson Med 2000; 43: 368 – 374.en_US
dc.identifier.citedreferenceKrynicki K, Green CD, Sawyer DW. Pressure and temperature dependence of self‐diffusion in water. Faraday Discuss Chem Soc 1978; 66: 199 – 208.en_US
dc.identifier.citedreferenceMatsuya R, Kuroda M, Matsumoto Y, et al. A new phantom using polyethylene glycol as an apparent diffusion coefficient standard for MR imaging. Int J Oncol 2009; 35: 893 – 900.en_US
dc.identifier.citedreferenceSpees WM, Song S‐K, Garbow JR, Neil JJ, Ackerman JH. Use of ethylene glycol to evaluate gradient performance in gradient‐intensive diffusion MR sequences. Magn Reson Med 2012; 68: 319 – 324.en_US
dc.identifier.citedreferenceHamstra DA, Lee KC, Moffat BA, Chenevert TL, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: an imaging treatment response biomarker to chemoradiotherapy in a mouse model of squamous cell cancer of the head and neck. Transl Oncol 2008; 1: 187 – 194.en_US
dc.identifier.citedreferenceGalban CJ, Mukherji SK, Chenevert TL, et al. A feasibility study of parametric response map analysis of diffusion‐weighted magnetic resonance imaging scans of head and neck cancer patients for providing early detection of therapeutic efficacy. Transl Oncol 2009; 2: 184 – 190.en_US
dc.identifier.citedreferenceChenevert TL, Ross BD. Diffusion imaging for therapy response assessment of brain tumor. Neuroimaging Clin N Am 2009; 19: 559 – 571.en_US
dc.identifier.citedreferencePadhani AR, Liu G, Koh DM, et al. Diffusion‐weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009; 11: 102 – 125.en_US
dc.identifier.citedreferenceMulkern RV, Gudbjartsson H, Westin CF, et al. Multi‐component apparent diffusion coefficients in human brain. NMR Biomed 1999; 12: 51 – 62.en_US
dc.identifier.citedreferenceRiches SF, Hawtin K, Charles‐Edwards EM, de Souza NM. Diffusion‐weighted imaging of the prostate and rectal wall: comparison of biexponential and monoexponential modelled diffusion and associated perfusion coefficients. NMR Biomed 2009; 22: 318 – 325.en_US
dc.identifier.citedreferenceColagrande S, Pasquinelli F, Mazzoni LN, et al. MR‐diffusion weighted imaging of healthy liver parenchyma: repeatability and reproducibility of apparent diffusion coefficient measurement. J Magn Reson Imaging 2010; 31: 912 – 920.en_US
dc.identifier.citedreferenceTiepel SJ, Reuter S, Stieltjes B, et al. Multicenter stability of diffusion tensor imaging measures: a European clinical and physical phantom study. Psychiatry Res 2011; 194: 363 – 371.en_US
dc.identifier.citedreferenceSasaki M, Yamada K, Watanabe Y, et al. Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi‐institutional comparison study. Radiology 2008; 249: 624 – 630.en_US
dc.identifier.citedreferenceBammer R, Markl M, Barnett, A, et al. Analysis and generalized correction of the effect of spatial gradient field distortions in diffusion weighted imaging. Magn Reson Med 2003; 50: 560 – 569.en_US
dc.identifier.citedreferenceMeier C, Zwanger M, Feiweier T, Porter D. Concomitant field terms for asymmetric gradient coils: consequences for diffusion, flow, and echo‐planar imaging. Magn Reson Med 2008; 60: 128 – 134.en_US
dc.identifier.citedreferenceHolz M, Heil SR, Sacco A. Temperature‐dependent self‐diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys Chem Chem Phys 2000; 2: 4740 – 4742.en_US
dc.identifier.citedreferenceSimpson JH, Carr HY. Diffusion and nuclear spin relaxation in water. Phys Rev 1958; 111: 1201 – 1202.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.