Show simple item record

Superthermal electron energy interchange in the ionosphere‐plasmasphere system

dc.contributor.authorKhazanov, G. V.en_US
dc.contributor.authorGlocer, A.en_US
dc.contributor.authorLiemohn, M. W.en_US
dc.contributor.authorHimwich, E. W.en_US
dc.date.accessioned2013-05-02T19:34:59Z
dc.date.available2014-03-03T15:09:25Zen_US
dc.date.issued2013-02en_US
dc.identifier.citationKhazanov, G. V.; Glocer, A.; Liemohn, M. W.; Himwich, E. W. (2013). "Superthermal electron energy interchange in the ionosphere‐plasmasphere system." Journal of Geophysical Research: Space Physics 118(2): 925-934. <http://hdl.handle.net/2027.42/97456>en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97456
dc.description.abstractA self‐consistent approach to superthermal electron (SE) transport along closed field lines in the inner magnetosphere is used to examine the concept of plasmaspheric transparency, magnetospheric trapping, and SE energy deposition to the thermal electrons. The dayside SE population is generated both by photoionization of the thermosphere and by secondary electron production from impact ionization when the photoelectrons collide with upper atmospheric neutral particles. It is shown that a self‐consistent approach to this problem produces significant changes, in comparison with other approaches, in the SE energy exchange between the plasmasphere and the two magnetically conjugate ionospheres. In particular, plasmaspheric transparency can vary by a factor of two depending on the thermal plasma content along the field line and the illumination conditions of the two conjugate ionospheres. This variation in plasmaspheric transparency as a function of thermal plasma and ionospheric conditions increases with L ‐shell, as the field line gets longer and the equatorial pitch angle extent of the fly‐through zone gets smaller. The inference drawn from these results is that such a self‐consistent approach to SE transport and energy deposition should be included to ensure robustness in ionosphere‐magnetosphere modeling networks. Key Points A self‐consistent approach alters the SE energy exchange in the I‐P system Plasmaspheric transparency varies with the thermal plasma and illumination SE transport and energy dep should be included in M‐I modeling networksen_US
dc.publisherNav. Res. Laben_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSuperthermal Electronsen_US
dc.subject.otherKinetic Modelingen_US
dc.subject.otherIonosphere‐Plasmasphere Couplingen_US
dc.titleSuperthermal electron energy interchange in the ionosphere‐plasmasphere systemen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97456/1/jgra50127.pdf
dc.identifier.doi10.1002/jgra.50127en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceLiemohn, M. W., J. L. Fox, A. F. Nagy, and X. Fang ( 2004 ), Hot carbon densities in the exosphere of Venus, J. Geophys. Res., 109, A10307, doi: 10.1029/2004JA010643.en_US
dc.identifier.citedreferenceKhazanov, G. V., T. E. Moore, M. W. Liemohn, V. K. Jordanova, and M.‐C. Fok ( 1996 ), Global collisional model of high‐energy photoelectrons, Geophys. Res. Lett., 23, 331.en_US
dc.identifier.citedreferenceKhazanov, G. V., M. W. Liemohn, J. U. Kozyra, and T. E. Moore ( 1998 ), Inner magnetospheric superthermal electron transport: Photoelectron and plasma sheet electron sources, J. Geophys. Res., 103, 23,485.en_US
dc.identifier.citedreferenceKhazanov, G. V., M. W. Liemohn, J. U. Kozyra, and D. L. Gallagher ( 2000 ), Global energy deposition to the topside ionosphere from superthermal electrons, J. Atmos. Solar‐Terr. Phys., 62, 947.en_US
dc.identifier.citedreferenceKrinberg, I. A., and G. K. Matafonov ( 1978 ), Coulomb collision‐induced photoelectron trapping by the geomagnetic field and electron gas heating in the plasmasphere. Ann. Geophys., 34, 89 – 96.en_US
dc.identifier.citedreferenceKrinberg, and Tashchilin ( 1984 ), Ionosphere and Plasmasphere, Publish House, Nauka (in Russian).en_US
dc.identifier.citedreferenceLejeune, J., and F. Wormser ( 1976 ), Diffusion of photoelectrons along a field line inside the plasmasphere. J. Geophys. Res. 81, 2900 – 2916.en_US
dc.identifier.citedreferenceLejeune, J. ( 1978 ), “Two‐stream” photoelectron distributions with interhemispheric coupling: A mixing of analytical and numerical methods, Planet. Space Sci. 561 – 576.en_US
dc.identifier.citedreferenceLiemohn, M. W., and G. V. Khazanov ( 1998 ), Determining the significance of electrodynamic coupling between superthermal electrons and thermal plasma, in Geospace Mass and Energy Flow, Geophys. Monogr. Ser., vol. 104, edited by J. L. Horwitz, D. L. Gallagher, and W. K. Peterson, p. 343, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceNagy, A. F., and P. M. Banks ( 1970 ), Photoelectron fluxes in the ionosphere. J. Geophys. Res., 75, 6260 – 6270.en_US
dc.identifier.citedreferenceNewberry, I. T., R. H. Comfort, P. G. Richards, and C. R. Chappell ( 1989 ), Thermal He + in the plasmasphere: Comparison of observations with numerical calculations, J. Geophys. Res., 94, 15,265 – 15,276.en_US
dc.identifier.citedreferencePeterson, W. K., J. P. Doering, T. A. Potemra, R. W. McEntire, and C. O. Bostrom ( 1977 ), Conjugate photoelectron fluxes observed on Atmosphere Explorer C, Geophys. Res. Lett., 4, 109.en_US
dc.identifier.citedreferenceRichards, P. G., and W. K. Peterson ( 2008 ), Measured and modeled backscatter of ionospheric photoelectron fluxes, J. Geophys. Res., 113, A08321, doi: 10.1029/2008JA013092.en_US
dc.identifier.citedreferenceRichards, P. G., R. W. Schunk, and J. J. Sojka ( 1983 ), Large‐scale counter streaming of H + and He + along plasmaspheric flux tubes, J. Geophys. Res., 88, 7879 – 7886.en_US
dc.identifier.citedreferenceRichards, P. G., et al. ( 2000 ), On the relative importance of convection and temperature on the behavior of the ionosphere in North America during January 6–12, 1997, J. Geophys. Res., 105 ( A6 ), 12,763 – 12,776.en_US
dc.identifier.citedreferenceSanatani, S., and W. B. Hanson ( 1970 ), Plasma temperature in the magnetosphere. J. Geophys. Res., 75, 769 – 775.en_US
dc.identifier.citedreferenceSolomon, S. C., P. B. Hays, and V. J. Abreu ( 1988 ), The auroral 6300 Å emission: Observations and modeling. J. Geophys. Res., 93, 9867 – 9882.en_US
dc.identifier.citedreferenceTakahashi, T. ( 1973 ), Energy degradation and transport of photoelectrons escaping from the upper ionosphere. Rept. Ionos. Space Res. Jap. 27, 79 – 86.en_US
dc.identifier.citedreferenceVarney, R. H., W. E. Swartz, D. L. Hysell, and J. D. Huba ( 2012 ), SAMI2‐PE: A model of the ionosphere including multistream interhemispheric photoelectron transport, J. Geophys. Res., 117, A06322, doi: 10.1029/2011JA017280.en_US
dc.identifier.citedreferenceWoods, T. N., S. M. Bailey, W. K. Peterson, H. P. Warren, S. C. Solomon, F. G. Eparvier, H. Garcia, C. W. Carlson, and J. P. McFadden ( 2003 ), Solar extreme ultraviolet variability of the X-class flare on 21 April 2002 and the terrestrial photoelectron response, Space Weather, 1 ( 1 ), 1001, doi: 10.1029/2003SW000010.en_US
dc.identifier.citedreferenceYoung, E. R., P. G. Richards, and D. G. Torr ( 1980 ), A flux preserving method of coupling first and second order equations to simulate the flow of plasma between the protonosphere and the ionosphere, Comput. Phys., 38, 141 – 156.en_US
dc.identifier.citedreferenceBanks, P. M., and A. F. Nagy ( 1970 ), Concerning the influence of elastic scattering upon photoelectron transport and escape. J. Geophys. Res., 75, 1902 – 1910.en_US
dc.identifier.citedreferenceBell, K. L., and R. P. Stafford ( 1992 ), Photoionization cross sections for atomic oxygen. Planet. Space Sci., 40, 1419 – 1424.en_US
dc.identifier.citedreferenceBilitza, D. ( 1990 ), Progress report on IRI status. Adv. Space Res., 10 ( 11 ), 3 – 5.en_US
dc.identifier.citedreferenceBuonsanto, M. J., M. Codrescu, B. A. Emery, C. G. Fesen, T. J. Fuller‐Rowell, D. J. Menendez‐Alvira, and D. P. Sipler ( 1997 ), Comparison of models and measurements at Millstone Hill during the January 24–26, 1993, minor storm interval, J. Geophys. Res., 102, 7267.en_US
dc.identifier.citedreferenceChamberlin, P. C., T. N. Woods, and F. G. Eparvier ( 2007 ), Flare Irradiance Spectral Model (FISM): Daily component algorithms and results, Space Weather, 5, S07005, doi: 10.1029/2007SW000316.en_US
dc.identifier.citedreferenceChamberlin, P. C., T. N. Woods, and F. G. Eparvier ( 2008 ), Flare Irradiance Spectral Model (FISM): Flare component algorithms and results, Space Weather, 6, S05001, doi: 10.1029/2007SW000372.en_US
dc.identifier.citedreferenceConway, R. R. ( 1988 ), Photoabsorption and photoionization cross sections: A compilation of recent measurements. Memo Rep. 6155, Nav. Res. Lab., Washington, D.C.en_US
dc.identifier.citedreferenceFennelly, J. A., and D. G. Torr ( 1992 ), Photoionization and photoabsorption cross sections of O, N 2, O 2, and N for aeronomic calculations, At. Data Nucl. Data Tables, 51, 321 – 363.en_US
dc.identifier.citedreferenceGalperin, Y. I., and T. M. Mulyarchik ( 1966 ), On the height distribution of photoelectrons. Kosmich. Issledov. 4, 932 – 941 (in Russian).en_US
dc.identifier.citedreferenceGastman, I. J. ( 1973 ), Theoretical investigation and plasma line measurements of conjugate photoelectrons in the ionosphere. Ph. D. Thesis. Univ. of Michigan, Ann Arbor.en_US
dc.identifier.citedreferenceHedin, A. E. ( 1991 ), Extension of the MSIS thermospheric model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159 – 1172.en_US
dc.identifier.citedreferenceHinteregger, H. E. ( 1981 ), Representations of solar EUV fluxes for aeronomical applications. Adv. Space Res., 1, 39 – 52.en_US
dc.identifier.citedreferenceHuba, J. D., G. Joyce, and J. A. Fedder ( 2000 ), SAMI2 is another model of the ionosphere (SAMI2): A new low‐latitude ionosphere model, J. Geophys. Res., 105 ( A10 ), 23,035.en_US
dc.identifier.citedreferenceKhazanov, G. V. ( 1979 ), The Kinetics of the Electron Plasma Component of the Upper Atmosphere (in Russian), Moscow, Nauka, English translation: Washington, D.C., National Translation Center, #80-50707, 1980.en_US
dc.identifier.citedreferenceKhazanov, G. V. ( 2011 ), Kinetic Theory of the Inner Magnetospheric Plasma, Springer, New York Heidelberg Dordrecht London.en_US
dc.identifier.citedreferenceKhazanov, G. V., T. I. Gombosi, A. F. Nagy, and M. A. Koen ( 1992 ), Analysis of the ionosphere‐plasmasphere transport of superthermal electrons: 1. Transport in the plasmasphere, J. Geophys. Res., 97, 16,887 – 16,895.en_US
dc.identifier.citedreferenceKhazanov, G. V., and M. W. Liemohn ( 1995 ), Nonsteady state ionosphere‐plasmasphere coupling of superthermal electrons, J. Geophys. Res., 100, 9669.en_US
dc.identifier.citedreferenceKhazanov, G. V., and M. W. Liemohn ( 2000 ), Kinetic theory of superthermal electron transport, in Recent Research Developments in Geophysics, 3 (part 2), edited by S. G. Pandalai, pp. 181 – 201, Research Signpost, Trivandrum, India.en_US
dc.identifier.citedreferenceKhazanov, G. V., and M. W. Liemohn ( 2002 ), Transport of photoelectrons in the nightside magnetosphere, J. Geophys. Res., 107 ( A5 ), 1064, doi: 10.1029/2001JA000163.en_US
dc.identifier.citedreferenceKhazanov, G. V., M. A. Koen, Y. V. Konikov, and I. M. Sidorov ( 1984 ), Simulation of ionosphere‐plasmasphere coupling taking into account ion inertia and temperature anisotropy. Planet. Space Sci., 32, 585 – 598.en_US
dc.identifier.citedreferenceKhazanov, G. V., T. Neubert, and G. D. Gefan ( 1994 ), A unified theory of ionosphere‐plasmasphere transport of suprathermal electrons. IEEE Trans. Plasma Sci., 22, 187 – 198.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.