Show simple item record

A Geometric Framework for Evaluating Rare Variant Tests of Association

dc.contributor.authorLiu, Kelien_US
dc.contributor.authorFast, Shannonen_US
dc.contributor.authorZawistowski, Matthewen_US
dc.contributor.authorTintle, Nathan L.en_US
dc.date.accessioned2013-05-02T19:35:01Z
dc.date.available2014-07-01T15:53:28Zen_US
dc.date.issued2013-05en_US
dc.identifier.citationLiu, Keli; Fast, Shannon; Zawistowski, Matthew; Tintle, Nathan L. (2013). "A Geometric Framework for Evaluating Rare Variant Tests of Association." Genetic Epidemiology 37(4): 345-357. <http://hdl.handle.net/2027.42/97460>en_US
dc.identifier.issn0741-0395en_US
dc.identifier.issn1098-2272en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97460
dc.description.abstractThe wave of next‐generation sequencing data has arrived. However, many questions still remain about how to best analyze sequence data, particularly the contribution of rare genetic variants to human disease. Numerous statistical methods have been proposed to aggregate association signals across multiple rare variant sites in an effort to increase statistical power; however, the precise relation between the tests is often not well understood. We present a geometric representation for rare variant data in which rare allele counts in case and control samples are treated as vectors in Euclidean space. The geometric framework facilitates a rigorous classification of existing rare variant tests into two broad categories: tests for a difference in the lengths of the case and control vectors, and joint tests for a difference in either the lengths or angles of the two vectors. We demonstrate that genetic architecture of a trait, including the number and frequency of risk alleles, directly relates to the behavior of the length and joint tests. Hence, the geometric framework allows prediction of which tests will perform best under different disease models. Furthermore, the structure of the geometric framework immediately suggests additional classes and types of rare variant tests. We consider two general classes of tests which show robustness to noncausal and protective variants. The geometric framework introduces a novel and unique method to assess current rare variant methodology and provides guidelines for both applied and theoretical researchers.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherRare Variantsen_US
dc.subject.otherBurden Testsen_US
dc.subject.otherSequencingen_US
dc.titleA Geometric Framework for Evaluating Rare Variant Tests of Associationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23526307en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97460/1/gepi21722.pdf
dc.identifier.doi10.1002/gepi.21722en_US
dc.identifier.sourceGenetic Epidemiologyen_US
dc.identifier.citedreferenceThe ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57 – 74.en_US
dc.identifier.citedreferenceLuedtke A, Powers S, Petersen A, Sitarik A, Bekmetjev A, Tintle NL. 2011. Evaluating methods for the analysis of rare variants in sequence data. BMC Proc 5: S119.en_US
dc.identifier.citedreferenceMadsen BE, Browning SR. 2009. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5: e1000384.en_US
dc.identifier.citedreferenceMayer‐Jochimsen M, Fast S, Tintle NL. 2012. Assessing the impact of differential genotyping errors on rare variant tests of association. PLoS One 8: e56626.en_US
dc.identifier.citedreferenceMorgenthaler S, Thilly WG. 2007. A strategy to discover genes that carry multiallelic or mono‐allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res Fund Mol Mech Mut 615: 28 – 56.en_US
dc.identifier.citedreferenceMorris AP, Zeggini E. 2010. An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet Epidemiol 34: 188 – 193.en_US
dc.identifier.citedreferenceNeale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orho‐Melander M, Kathiresan S, Purcell SM, Roeder K, Daly MJ. 2011. Testing for an unusual distribution of rare variants. PLoS Genet 7: e1001322.en_US
dc.identifier.citedreferenceNelson MR, Wegmann D, Ehm MG, Kessner D, St. Jean P, Verzilli C, Shen J, Tang Z, Bacanu S, Fraser D and others. 2012. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337: 100 – 104.en_US
dc.identifier.citedreferencePan W, Shen X. 2011. Adaptive tests for association analysis of rare variants. Genet Epidemiol 35: 381 – 388.en_US
dc.identifier.citedreferencePowers S, Gopalakrishnan S, Tintle NL. 2011. Assessing the impact of non‐differential genotyping errors on rare variant tests of association. Hum Hered 72: 152 – 159.en_US
dc.identifier.citedreferencePrice AL, Kryukov GV, de Bakker PIW, Purcell SM, Staples J, Wei L, Sunyaev SR. 2010. Pooled association tests for rare variants in exon‐resequencing studies. Am J Hum Genet 86: 832 – 838.en_US
dc.identifier.citedreferenceQuintana MA, Berstein JL, Thomas DC, Conti DV. 2011. Incorporating model uncertainty in detecting rare variants: the Bayesian risk index. Genet Epidemiol 35: 638 – 649.en_US
dc.identifier.citedreferenceRivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, Zhang CK, Boucher G, Ripke S, Ellinghaus D, Burtt N and others. 2011. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet 43: 1066 – 1075.en_US
dc.identifier.citedreferenceSul J, Han B, He D, Eskin E. 2011. An optimal weighted aggregated association test for identification of rare variants involved in common diseases. Genet 188: 181 – 188.en_US
dc.identifier.citedreferenceSun YV, Sung YJ, Tintle NL, Ziegler A. 2011. Identification of genetic association of multiple rare variants using collapsing methods. Genet Epidemiol 35: S101 – S106.en_US
dc.identifier.citedreferenceTennessen JA, Bigham AW, O'Connor TD, Fu W, Kenny EE, Gravel S, McGee S, Do R, Liu X, Jun G and others. 2012. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Sci. Science 3337: 64 – 69.en_US
dc.identifier.citedreferenceTintle NL, Aschard H, Hu I, Nock N, Wang H, Pugh E. 2011. Inflated type I error rates when using aggregation methods to analyze rare variants in the 1000 Genomes Project exon sequencing data in unrelated individuals: summary results from group 7 at genetic analysis workshop 17. Genet Epidemiol 35: S56 – S60.en_US
dc.identifier.citedreferenceTorgerson DG, Capurso D, Mathias RA, Graves PE, Hernandez RD, Beaty TH, Bleecker ER, Raby BA, Meyers DA, Barnes KC and others. 2012. Resequencing candidate genes implicates rare variants in asthma susceptibility. Am J Hum Genet 90: 273 – 281.en_US
dc.identifier.citedreferenceWu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. 2011. Rare‐variant association testing for sequence data with the sequence kernel association test. Am J Hum Genet 89: 82 – 93.en_US
dc.identifier.citedreferenceYi N, Zhi D. 2011. Bayesian analysis of rare variants in genetic association studies. Genet Epidemiol 35: 57 – 69.en_US
dc.identifier.citedreferenceZawistowski M, Gopalakrishnan S, Ding J, Li Y, Grimm S, Zollner S. 2010. Extending rare‐variant testing strategies: analysis of noncoding sequence and imputed genotypes. Am J Hum Genet 87: 604 – 617.en_US
dc.identifier.citedreferenceZawistowski M, Reppell M, Wegmann D, St. Jean PL, Ehm MG, Nelson MR, Novembre J, Zollner S. 2012. Differential stratification in rare variant tests observed using an analytic model of joint site frequency spectra. Unpublished manuscript.en_US
dc.identifier.citedreferenceZhang Q., Irvin MR, Arnett DK, Province MA, Borecki I. 2011. A data‐driven method for identifying rare variants with heterogeneous trait effects. Genet Epidemiol 35: 679 – 685.en_US
dc.identifier.citedreference1000 Genomes Project Consortium. 2010. A map of human genome variation from population‐scale sequencing. Nature 467: 1061 – 1073.en_US
dc.identifier.citedreferenceAsimit J, Zeggini E. 2010. Rare variant association analysis methods for complex traits. Annu Rev Genet 44: 293 – 308.en_US
dc.identifier.citedreferenceBansal V, Libiger O, Torkamani A, Schork NJ. 2010. Statistical analysis strategies for association studies involving rare variants. 11: 773 – 785.en_US
dc.identifier.citedreferenceBasu S, Pan W. 2011. Comparison of statistical tests for disease association with rare variants. Genet Epidemiol 35: 606 – 619.en_US
dc.identifier.citedreferenceCooper GM, Shendure J. 2011. Needles in stacks of needs: finding disease causal variants in a wealth of genomic data. Nat Genet 12: 628 – 640.en_US
dc.identifier.citedreferenceDai Y, Jiang R, Dong J. 2012. Weighted selective collapsing strategy for detecting rare and common variants in genetic association study. BMC Genet 13: 7.en_US
dc.identifier.citedreferenceDering C, Pugh E, Ziegler A. 2011. Statistical analysis of rare sequence variants: an overview of collapsing methods. Genet Epidemiol 35: S12 – S17.en_US
dc.identifier.citedreferenceFeng T, Elston RC, Zhu X. 2011. Detecting rare and common variants for complex traits: sibpair and odds ratio weighted sum statistics (SPWSS, ORWSS). Genet Epidemiol 35: 398 – 409.en_US
dc.identifier.citedreferenceGibson G. 2012. Rare and common variants: twenty arguments. Nat Rev Genet 13: 135 – 145.en_US
dc.identifier.citedreferenceHan F, Pan W. 2010. A data‐adaptive sum test for disease association with multiple common or rare variants. Hum Hered 70: 42 – 54.en_US
dc.identifier.citedreferenceIonita‐Laza I, Buxbaum JD, Laird NM, Lange C. 2011. A new testing strategy to identify rare variants with either risk or protective effect on disease. PLoS Genet 7: e1001289.en_US
dc.identifier.citedreferenceLadouceur M, Dastani Z, Aulchenko YS, Greenwood CMT, Richards JB. 2012. The empirical power of rare variant association methods: results from sanger sequencing in 1998 individuals. PLoS Genet 8: e1002496.en_US
dc.identifier.citedreferenceLi B, Leal SM. 2008. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83: 311 – 321.en_US
dc.identifier.citedreferenceLi Q, Zhang H, Yu K. 2010. Approaches for evaluating rare polymorphisms in genetic association studies. Hum Hered 69: 219 – 228.en_US
dc.identifier.citedreferenceLi Y, Byrnes AE, Li M. 2011. To identify associations with rare variants, just WHaIT: weighted haplotype and imputation‐based tests. Am J Hum Genet 87: 728 – 735.en_US
dc.identifier.citedreferenceLin D, Tang Z. 2011. A general framework for detecting disease associations with rare variants in sequencing studies. Am J Hum Genet 89: 354 – 367.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.