Show simple item record

Skeletal indicators of ecological specialization in pika (Mammalia, Ochotonidae)

dc.contributor.authorReese, Aspen T.en_US
dc.contributor.authorLanier,, Hayley C.en_US
dc.contributor.authorSargis, Eric J.en_US
dc.date.accessioned2013-05-02T19:35:02Z
dc.date.available2014-07-01T15:53:28Zen_US
dc.date.issued2013-05en_US
dc.identifier.citationReese, Aspen T.; Lanier,, Hayley C.; Sargis, Eric J. (2013). "Skeletal indicators of ecological specialization in pika (Mammalia, Ochotonidae)." Journal of Morphology 274(5): 585-602. <http://hdl.handle.net/2027.42/97461>en_US
dc.identifier.issn0362-2525en_US
dc.identifier.issn1097-4687en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97461
dc.description.abstractPika species generally fall into two ecotypes, meadow‐dwelling (burrowing) or talus‐dwelling, a classification that distinguishes a suite of different ecological, behavioral, and life history traits. Despite these differences, little morphological variation has previously been documented to distinguish among ecotypes. The aim of this study was to test whether postcranial features related to burrowing are present in meadow‐dwelling species and whether talus‐dwelling species exhibit postcranial modifications related to frequent leaping between rocks. To test this, the scapula, humerus, ulna, radius, innominate, femur, tibia, and calcaneus of 15 species were studied and measured. Twenty‐three measurements were taken on 199 skeletons, and 19 indices were constructed from these measurements. Indices were compared between the two ecotypes using Student's t ‐test. Comparisons among ecotypes, species, and subgenera were made using one‐way ANOVA with the Tukey honest significant difference post hoc test. Multivariate results were generated using principal components analyses. Thirteen forelimb and hind limb indices proved significant in distinguishing the meadow‐dwelling, talus‐dwelling, and intermediate forms. A number of these indices are associated with burrowing or leaping in other mammals, providing some support for the hypothesis that postcranial modifications in pika are related to locomotor differences. This evidence of morphological responses to ecological specialization will be useful for reconstructing the paleobiology of extinct taxa, assessing the behavioral variability of extant species, and improving our understanding of the evolutionary history of pikas. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherHind Limben_US
dc.subject.otherOchotonaen_US
dc.subject.otherDiggingen_US
dc.subject.otherForelimben_US
dc.subject.otherFunctional Morphologyen_US
dc.titleSkeletal indicators of ecological specialization in pika (Mammalia, Ochotonidae)en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherDivision of Vertebrate Zoology, Yale Peabody Museum of Natural History, New Haven, Connecticut 06520en_US
dc.contributor.affiliationotherDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520en_US
dc.contributor.affiliationotherDepartment of Anthropology, Yale University, New Haven, Connecticut 06520en_US
dc.contributor.affiliationotherDepartment of Biology, Duke University, Box 90338, Durham, NC 27705en_US
dc.identifier.pmid23381921en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97461/1/20127_ftp.pdf
dc.identifier.doi10.1002/jmor.20127en_US
dc.identifier.sourceJournal of Morphologyen_US
dc.identifier.citedreferenceSargis EJ. 2002a. Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 253: 10 – 42.en_US
dc.identifier.citedreferenceLanier HC, Olson LE. 2009. Inferring divergence times within pikas ( Ochotona spp.) using mtDNA and relaxed molecular dating techniques. Mol Phylogenet Evol 53: 1 – 12.en_US
dc.identifier.citedreferenceLessa EP, Vassallo AI, Verzi DH, Mora MS. 2008. Evolution of morphological adaptations for digging in living and extinct ctenomyid and octodontid rodents. Biol J Linn Soc 95: 267 – 283.en_US
dc.identifier.citedreferenceLissovsky AA. 2004. Contribution to age determination of pikas (Lagomorpha, Ochotonidae, Ochotona ). Russian J Theriol 3: 43 – 48.en_US
dc.identifier.citedreferenceLissovsky AA, Ivanova NV, Borisenko AV. 2007. Molecular phylogenetics and taxonomy of the subgenus Pika ( Ochotona, Lagomorpha). J Mammal 88: 1195 – 1204.en_US
dc.identifier.citedreferenceMacDonald SO, Jones C. 1987. Ochotona collaris. Mamm Species 281: 1 – 4.en_US
dc.identifier.citedreferenceMarkham OD, Whicker FW. 1972. Burrowing in pika ( Ochotona princeps ). J Mammal 53: 387 – 389.en_US
dc.identifier.citedreferenceMorgan CC. 2009. Geometric morphometrics of the scapula of South American caviomorph rodents (Rodentia: Hystricognathi): Form, function and phylogeny. Mamm Biol 74: 497 – 506.en_US
dc.identifier.citedreferenceNiu Y, Wei F, Li M, Liu X, Feng Z. 2004. Phylogeny of pikas (Lagomorpha, Ochotona ) inferred from mitochondrial cytochrome b sequences. Folia Zool 53: 141 – 155.en_US
dc.identifier.citedreferenceSalton JA, Sargis EJ. 2008. Evolutionary morphology of the Tenrecoidea (Mammalia) forelimb skeleton. In: Sargis EJ, Dagosto M, editors. Mammalian Evolutionary Morphology: A tribute to Frederick S. Szalay. Dordrecht, The Netherlands: Springer. pp 51 – 71.en_US
dc.identifier.citedreferenceSalton JA, Sargis EJ. 2009. Evolutionary morphology of the Tenrecoidea (Mammalia) hindlimb skeleton. J Morphol 270: 367 – 387.en_US
dc.identifier.citedreferenceSamuels JX, Van Valkenburgh B. 2008. Skeletal indicators of locomotor adaptations in living and extinct rodents. J Morphol 269: 1387 – 1411.en_US
dc.identifier.citedreferenceSargis EJ. 2002b. Functional morphology of the hindlimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 254: 149 – 185.en_US
dc.identifier.citedreferenceSargis EJ, Terranova CJ, and Gebo DL. 2008. Evolutionary morphology of the guenon postcranium and its taxonomic implications. In: Sargis EJ, Dagosto M, editors. Mammalian Evolutionary Morphology: A tribute to Frederick S. Szalay. Dordrecht, The Netherlands: Springer. pp 361 – 372.en_US
dc.identifier.citedreferenceSmith AT. 1988. Patterns of pika (Genus Ochotona ) life history variation. In: Boyce MS, editor. Evolution of Life Histories: Theory and Patterns From Mammals. New Haven, CT: Yale University Press. pp 233 – 256.en_US
dc.identifier.citedreferenceSmith AT. 2008. The world of pikas. In: Alves PC, Ferrand N, Hackländer K, editors. Lagomorph Biology: Evolution, Ecology, and Conservation. Berlin: Springer‐Verlag. pp 89 – 102.en_US
dc.identifier.citedreferenceSmith AT, Formozov NA, Hoffman RS, Changlin Z, Erbajeva MA. 1990. Pikas. In: Chapman JA, Flux JEC, editors. Rabbits, Hares and Pikas: Status Survey and Conservation Action Plan. Gland, Switzerland: IUCN, Gland, Switzerland. pp 14 – 60.en_US
dc.identifier.citedreferenceSmith AT, Weston ML. 1990. Ochotona princeps. Mamm Species 352: 1 – 8.en_US
dc.identifier.citedreferenceSmith JM, Savage RJR. 1956. Some locomotory adaptations in mammals. J Linnean Soc London Zool 42: 603 – 622.en_US
dc.identifier.citedreferenceStein BR. 2000. Morphology of subterranean rodents. In: Lacey EA, Patton JL, Cameron GN, editors. Life Underground: The Biology of Subterranean Rodents. Chicago, IL: University of Chicago Press. pp 19 – 61.en_US
dc.identifier.citedreferenceSzalay FS, Sargis EJ. 2001. Model‐based analysis of postcranial osteology of marsupials from the Paleocene of Itaborai (Brazil) and the phylogenetics and biogeography of Metatheria. Geodiversitas 23: 139 – 302.en_US
dc.identifier.citedreferenceTaylor ME. 1974. The functional anatomy of the forelimb of some African Viverridae (Carnivora). J Morphol 143: 307 – 335.en_US
dc.identifier.citedreferenceTaylor ME. 1976. The functional anatomy of the hindlimb of some African Viverridae (Carnivora). J Morphol 148: 227 – 254.en_US
dc.identifier.citedreferenceVizcaíno SF, Milne N. 2002. Structure and function in armadillo limbs (Mammalia: Xenarthra: Dasypodidae). J Zool 257: 117 – 127.en_US
dc.identifier.citedreferenceWeston ML. 1982. A numerical revision of the genus Ochotona (Lagomorpha: Mammalia) and an examination of its relationships [dissertation]. Vancouver: University of British Columbia, Vancouver. p 410.en_US
dc.identifier.citedreferenceYu N, Zheng C, Feng Z. 1992. [The phylogenetic analysis of the subgenus Ochotona of China.] Acta Theriol Sinica 12: 255 – 256.en_US
dc.identifier.citedreferenceYu N, Zheng CL, Zhang YP, Li WH. 2000. Molecular systematics of pikas (genus Ochotona ) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 16: 85 – 95.en_US
dc.identifier.citedreferenceAnemone RL. 1990. The VCL hypothesis revisited: Patterns of femoral morphology among quadrupedal and saltatorial prosimian primates. Am J Phys Anthropol 83: 373 – 393.en_US
dc.identifier.citedreferenceArgot C. 2001. Functional‐adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 247: 51 – 79.en_US
dc.identifier.citedreferenceArgot C. 2002. Functional‐adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 253: 76 – 108.en_US
dc.identifier.citedreferenceAverianov A. 1995. Osteology and adaptations of the early Pliocene rabbit Trischizolagus dumitrescuae (Lagomorpha: Leporidae). J Vert Paleontol 15: 375 – 386.en_US
dc.identifier.citedreferenceBeever EA, Brussard PF, Berger J. 2003. Patterns of apparent extirpation among isolated populations of pikas ( Ochotona princeps ) in the Great Basin. J Mammal 84: 37 – 54.en_US
dc.identifier.citedreferenceBrown JH 1971. Mammals on mountaintops: Nonequilibrium insular biogeography. Am Nat 105: 467 – 478.en_US
dc.identifier.citedreferenceBrown JH. 1978. The theory of insular biogeography and the distribution of boreal birds and mammals. Great Basin Nat 2: 209 – 227.en_US
dc.identifier.citedreferenceConnour JR, Glander K, Vincent F. 2000. Postcranial adaptations for leaping in primates. J Zool 251: 79 – 103.en_US
dc.identifier.citedreferenceCorbet GB. 1978. The mammals of the Palaearctic Region: A taxonomic review. London: British Museum Natural History. 314 p.en_US
dc.identifier.citedreferenceDagosto M. 1983. Postcranium of Adapis parisiensis and Leptadapis magnus (Adapiformes, Primates). Folia Primatol 41: 49 – 101.en_US
dc.identifier.citedreferenceDawson MR. 1967. Lagomorph history and the stratigraphic record. U Kansas Geol Spec Pub 2: 287 – 316.en_US
dc.identifier.citedreferenceElissamburu A, Vizcaíno SF. 2004. Limb proportions and adaptations in caviomorph rodents (Rodentia: Caviomorpha). J Zool London 262: 145 – 159.en_US
dc.identifier.citedreferenceFedosenko AK. 1974. [Some morphological characteristics of Ochotona.] Zool Zh 53: 485 – 486.en_US
dc.identifier.citedreferenceFormozov AN. 1981. [Behavioral adaptations of pikas living in rocky biotopes.] In: Naumov NP, editor. Ecology, Population Structure, and Communication Processes in Mammals. Moscow: Nauka. pp 245 – 263.en_US
dc.identifier.citedreferenceFormozov NA, Grigor'eva TV, Surin VL. 2006. [Molecular systematics of pikas of the subgenus Pika ( Ochotona, Lagomorpha).] Zool Zh 85: 1465 – 1473.en_US
dc.identifier.citedreferenceFostowicz‐Frelik L, Frelik GJ, Gasparik ML. 2010. Morphological phylogeny of pikas (Lagomorpha: Ochotona ), with a description of a new species from the Pliocene/Pleistocene transition of Hungary. Proc Acad Nat Sci Philadel 159: 97 – 118.en_US
dc.identifier.citedreferenceFulk GW, Khokar AR. 1980. Observations on the natural history of a pika ( Ochotona rufescens ) from Pakistan. Mammalia 44: 51 – 58.en_US
dc.identifier.citedreferenceGabriel JM. 1984. The effect of animal design on jumping performance. J Zool London 204: 533 – 539.en_US
dc.identifier.citedreferenceGe D, Zhang Z, Xia L, Zhang Q, Ma Y, Yang Q. 2012. Did the expansion of C4 plants drive extinction and massive range contraction of micromammals? Inferences from food preference and historical biogeography of pikas. Palaeogeog Palaeoclimatol Palaeoecol 326–328: 160 – 171.en_US
dc.identifier.citedreferenceHildebrand M. 1985. Digging of quadrupeds. In: Hildebrand M, Bramble DM, Liem KF, Wake DB, editors. Functional Vertebrate Morphology. Cambridge, MA: Belknap Press. pp 89 – 109.en_US
dc.identifier.citedreferenceHoffmann RS, Smith AT. 2005. Order Lagomorpha. In: Wilson DE and Reeder DM, editors. Mammal Species of the World. Baltimore. Johns Hopkins University Press. pp 185 – 211.en_US
dc.identifier.citedreferenceHopkins SSB, Davis EB. 2009. Quantitative morphological proxies for fossoriality in small mammals. J Morphol 90: 1449 – 1460.en_US
dc.identifier.citedreferenceIUCN 2011. IUCN Red List of Threatened Species. Version 2011.2. Available at: http://www.iucnredlist.org. Accessed on 15 January 2012.en_US
dc.identifier.citedreferenceJames RS, Navas CA, Herrel A. 2007. How important are skeletal muscle mechanics in setting limits on jumping performance? J Exp Biol 210: 923 – 933.en_US
dc.identifier.citedreferenceJungers WL. 1977. Hindlimb and pelvic adaptations to vertical climbing and clinging in Megaladapis, a giant subfossil prosimian from Madagascar. Year Phys Anthropol 20: 508 – 524.en_US
dc.identifier.citedreferenceKniazev AV, Savinetski AB. 1988. [Changes in the populations of small mammals of the Tsagan‐Bogdo ridge (Transaltai Gobi) in the late Holocene.] Zool Zh 67: 297 – 300.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.