Show simple item record

Arctic climate sensitivity to local black carbon

dc.contributor.authorFlanner, Mark G.en_US
dc.date.accessioned2013-05-02T19:35:06Z
dc.date.available2014-03-03T15:09:25Zen_US
dc.date.issued2013-02-27en_US
dc.identifier.citationFlanner, Mark G. (2013). "Arctic climate sensitivity to local black carbon." Journal of Geophysical Research: Atmospheres 118(4): 1840-1851. <http://hdl.handle.net/2027.42/97472>en_US
dc.identifier.issn2169-897Xen_US
dc.identifier.issn2169-8996en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97472
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherAmerican Institute of Physicsen_US
dc.subject.otherEfficacyen_US
dc.subject.otherBlack Carbonen_US
dc.subject.otherArcticen_US
dc.subject.otherRegional Climate Sensitivityen_US
dc.titleArctic climate sensitivity to local black carbonen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97472/1/jgrd50176.pdf
dc.identifier.doi10.1002/jgrd.50176en_US
dc.identifier.sourceJournal of Geophysical Research: Atmospheresen_US
dc.identifier.citedreferenceRobock A., L. Oman, G. L. Stenchikov, O. B. Toon, C. Bardeen, AND R. P. Turco ( 2007 ), Climatic consequences of regional nuclear conflicts, Atmos. Chem. Phys., 7, 2003 – 2012, doi: 10.5194/acp‐7‐2003‐2007.en_US
dc.identifier.citedreferenceSchwarz J. P., J.R. Spackman, R. Gao, L. A. Watts, P. Stier, M. Schulz, S. M. Davis, S. C. Wofsy, and D. W. Fahey ( 2010 ), Global‐scale black carbon profiles observed in the remote atmosphere and compared to models, Geophys. Res. Lett., 37, L18812, doi: 10.1029/2010GL044372.en_US
dc.identifier.citedreferenceSharma S., E. Andrews, L. A. Barrie, J. A. Ogren, and D. Lavoue ( 2006 ), Variations and sources of the equivalent black carbon in the high Arctic revealed by long term observations at Alert and Barrow: 1989–2003, J. Geophys. Res, 111, D14208, doi: 10.1029/2005JD006581.en_US
dc.identifier.citedreferenceShindell D. ( 2007 ), Local and remote contributions to Arctic warming, Geophys. Res. Lett., 34, L14704, doi: 10.1029/2007GL030221.en_US
dc.identifier.citedreferenceShindell D., and G. Faluvegi ( 2009 ), Climate response to regional radiative forcing during the twentieth century, Nature Geosci., 2, 294 – 300, doi: 10.1038/ngeo473.en_US
dc.identifier.citedreferenceShindell D., et al. ( 2012 ), Simultaneously mitigating near‐term climate change and improving human health and food security, Science, 335 ( 6065 ), 183 – 189, doi: 10.1126/science.1210026.en_US
dc.identifier.citedreferenceShindell D. T., et al. ( 2008 ), A multi‐model assessment of pollution transport to the Arctic, Atmos. Chem. Phys., 8, 5353 – 5372, doi: 10.5194/acp‐8‐5353‐2008.en_US
dc.identifier.citedreferenceSkeie R. B., T. Berntsen, G. Myhre, C. A. Pedersen, J. Ström, S. Gerland, and J. A. Ogren ( 2011 ), Black carbon in the atmosphere and snow, from pre‐industrial times until present, Atmos. Chem. Phys., 11 ( 14 ), 6809 – 6836, doi: 10.5194/acp‐11‐6809‐2011.en_US
dc.identifier.citedreferenceSpackman J. R., et al. ( 2010 ), Aircraft observations of enhancement and depletion of black carbon mass in the springtime Arctic, Atmos. Chem. Phys., 10 ( 19 ), 9667 – 9680, doi: 10.5194/acp‐10‐9667‐2010.en_US
dc.identifier.citedreferenceStohl A. ( 2006 ), Characteristics of atmospheric transport into the Arctic troposphere, J. Geophys. Res., 111, D11306, doi: 10.1029/2005JD006888.en_US
dc.identifier.citedreferenceStone R. S., G. P. Anderson, E. P. Shettle, E. Andrews, K. Loukachine, E.G. Dutton, C. Schaaf, and M.O. Roman III ( 2008 ), Radiative impact of boreal smoke in the Arctic: Observed and modeled, J. Geophys. Res., 113, D14S16, doi: 10.1029/2007JD009657.en_US
dc.identifier.citedreferenceTomasi C., et al. ( 2007 ), Aerosols in polar regions: A historical overview based on optical depth and in situ observations, J. Geophys. Res., 112 ( D16 ), D16205, doi: 10.1029/2007JD008432.en_US
dc.identifier.citedreferenceTrenberth K. E., and J. M. Caron ( 2001 ), Estimates of meridional atmosphere and ocean heat transports, J. Climate, 14 ( 16 ), 3433 – 3443.en_US
dc.identifier.citedreferenceTurco R. P., O. B. Toon, T. P. Ackerman, J.B. Pollack, and C. Sagan ( 1983 ), Nuclear winter: Global consequences of multple nuclear explosions, Science, 222 ( 4630 ), 1283 – 1292.en_US
dc.identifier.citedreferencevon Hardenberg J., L. Vozella, C. Tomasi, V. Vitale, A. Lupi, M. Mazzola, T. P. C. van Noije, A. Strunk, and A. Provenzale ( 2012 ), Aerosol optical depth over the Arctic: A comparison of ECHAM‐HAM and TM5 with ground‐based, satellite and reanalysis data, Atmos. Chem. Phys., 12 ( 15 ), 6953 – 6967, doi: 10.5194/acp‐12‐6953‐2012.en_US
dc.identifier.citedreferenceWang Q., et al. ( 2011 ), Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter–spring: Implications for radiative forcing, Atmos. Chem. Phys., 11 ( 23 ), 12,453 – 12,473, doi: 10.5194/acp‐11‐12453‐2011.en_US
dc.identifier.citedreferenceWarneke C., et al. ( 2010 ), An important contribution to springtime Arctic aerosol from biomass burning in Russia, Geophys. Res. Lett., 37 ( 5 ), L01801, doi: 10.1029/2009GL041816.en_US
dc.identifier.citedreferenceZarzycki C. M., and T. C. Bond ( 2010 ), How much can the vertical distribution of black carbon affect its global direct radiative forcing?, Geophys. Res. Lett., 37, L20807, doi: 10.1029/2010GL044555.en_US
dc.identifier.citedreferenceZhou C., J. E. Penner, M.G. Flanner, M. M. Bisiaux, R. Edwards, and J.R. McConnell ( 2012 ), Transport of black carbon to polar regions: Sensitivity and forcing by black carbon, Geophys. Res. Lett., 39 ( 22 ), L22804, doi: 10.1029/2012GL053388.en_US
dc.identifier.citedreferenceAckerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton ( 2000 ), Reduction of tropical cloudiness by soot, Science, 288, 1042 – 1047.en_US
dc.identifier.citedreferenceAlterskjær, K., J. E. Kristjánsson, and C. Hoose ( 2010 ), Do anthropogenic aerosols enhance or suppress the surface cloud forcing in the Arctic?, J. Geophys. Res, 115, D22204, doi: 10.1029/2010JD014015.en_US
dc.identifier.citedreferenceBan‐Weiss, G. A., L. Cao, G. Bala, and K. Caldeira ( 2011 ), Dependence of climate forcing and response on the altitude of black carbon aerosols, Clim. Dynam., 38, 897 – 911, doi: 10.1007/s00382‐011‐1052‐y.en_US
dc.identifier.citedreferenceBlanchard‐Wrigglesworth, E., K. C. Armour, C. M. Bitz, and E. DeWeaver ( 2011 ), Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations, J. Climate, 24 ( 1 ), 231 – 250, doi: 10.1175/2010JCLI3775.1.en_US
dc.identifier.citedreferenceBond, T. C., C. Zarzycki, M. G. Flanner, and D. M. Koch ( 2011 ), Quantifying immediate radiative forcing by black carbon and organic matter with the specific forcing pulse, Atmos. Chem. Phys., 11 ( 4 ), 1505 – 1525, doi: 10.5194/acp‐11‐1505‐2011.en_US
dc.identifier.citedreferenceBriegleb, B. P., and B. Light ( 2007 ), A Delta‐Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model, Technical Report Tech. Rep. NCAR/TN–472+STR, National Center for Atmospheric Research.en_US
dc.identifier.citedreferenceBrock, C. A., et al. ( 2011 ), Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project, Atmos. Chem. Phys., 11 ( 6 ), 2423 – 2453, doi: 10.5194/acp‐11‐2423‐2011.en_US
dc.identifier.citedreferenceBrowse, J., K. S. Carslaw, S. R. Arnold, K. Pringle, and O. Boucher ( 2012 ), The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol, Atmos. Chem. Phys., 12 ( 15 ), 6775 – 6798, doi: 10.5194/acp‐12‐6775‐2012.en_US
dc.identifier.citedreferenceCess R. D. ( 1983 ), Arctic aerosols: Model estimates of interactive influences upon the surface‐atmosphere clear‐sky radiation budget, Atmos. Environ., 17 ( 12 ), 2555 – 2564.en_US
dc.identifier.citedreferenceCollins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, J. T. Kiehl, and B. Briegleb, ( 2004 ), Description of the NCAR Community Atmosphere Model (CAM 3.0), Tech. Rep. NCAR/TN–464+STR, National Center for Atmospheric Research.en_US
dc.identifier.citedreferenceCook, J., and E. J. Highwood ( 2004 ), Climate response to tropospheric absorbing aerosols in an intermediate general‐circulation model, Q. J. R. Meteorol. Soc., 130, 175 – 191.en_US
dc.identifier.citedreferenceCorbett J. J., D. A. Lack, J. J. Winebrake, S. Harder, J. A. Silberman, and M. Gold ( 2010 ), Arctic shipping emissions, inventories and future scenarios, Atmos. Chem. Phys., 10 ( 19 ), 9689 – 9704, doi: 10.5194/acp‐10‐9689‐2010.en_US
dc.identifier.citedreferencede Boer G., W. Chapman, J. E. Kay, B. Medeiros, M. D. Shupe, S. Vavrus, and J. Walsh ( 2012 ), A characterization of the present‐day Arctic atmosphere in CCSM4, J. Climate, 25 ( 8 ), 2676 – 2695, doi: 10.1175/JCLI‐D‐11‐00228.1.en_US
dc.identifier.citedreferenceDoherty S. J., S. G. Warren, T. C. Grenfell, A. D. Clarke, and R. E. Brandt ( 2010 ), Light‐absorbing impurities in arctic snow, Atmos. Chem. Phys., 10 ( 23 ), 11,647 – 11,680, doi: 10.5194/acp‐10‐11647‐2010.en_US
dc.identifier.citedreferenceEleftheriadis K., S. Vratolis, and S. Nyeki ( 2009 ), Aerosol black carbon in the European Arctic: Measurements at Zeppelin station, Ny‐Alesund, Svalbard from 1998–2007, Geophys. Res. Lett, 36, L02809, doi: 10.1029/2008GL035741.en_US
dc.identifier.citedreferenceFlanner M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi: 10.1029/2006JD008003.en_US
dc.identifier.citedreferenceFlanner M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, P. J. Rasch ( 2009 ), Springtime warming and reduced snow cover from carbonaceous particles, Atmos. Chem. Phys., 9 ( 7 ), 2481 – 2497, doi: 10.5194/acp‐9‐2481‐2009.en_US
dc.identifier.citedreferenceFlanner M. G., K. M. Shell, M. Barlage, D. K. Perovich, M. A. Tschudi ( 2011 ), Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008, Nat. Geosci., 4, 151 ‐ 155, doi: 10.1038/ngeo1062.en_US
dc.identifier.citedreferenceForsström S., J. Ström, C. A. Pedersen, E. Isaksson, and S. Gerland ( 2009 ), Elemental carbon distribution in Svalbard snow, J. Geophys. Res., 114, D19112, doi: 10.1029/2008JD011480.en_US
dc.identifier.citedreferenceGarrett T. J., and C. Zhao ( 2006 ), Increased Arctic cloud longwave emissivity associated with pollution from mid‐latitudes, Nature, 440, 787 – 789, doi: 10.1038/nature04636.en_US
dc.identifier.citedreferenceGarrett T. J., S. Brattström, S. Sharma, D. E. Worthy, and P. Novelli ( 2011 ), The role of scavenging in the seasonal transport of black carbon and sulfate to the arctic, Geophys. Res. Lett., 38 ( 16 ), L16805, doi: 10.1029/2011GL048221.en_US
dc.identifier.citedreferenceGent P. R., et al. ( 2011 ), The community climate system model version 4, J. Climate, 24, 4973 – 4991, doi: 10.1175/2011JCLI4083.1.en_US
dc.identifier.citedreferenceGoldenson N., S. J. Doherty, C. M. Bitz, M. M. Holland, B. Light, A. J. Conley ( 2012 ), Arctic climate response to forcing from light‐absorbing particles in snow and sea ice in CESM, Atmos. Chem. Phys., 12 ( 17 ), 7903 – 7920, doi: 10.5194/acp‐12‐7903‐2012.en_US
dc.identifier.citedreferenceGong S, T. Zhao, S. Sharma, D. Toom‐Sauntry, D. Lavoué, X. Zhang, W. Leaitch, and L. Barrie ( 2010 ), Identification of trends and interannual variability of sulfate and black carbon in the Canadian High Arctic: 1981–2007, J. Geophys. Res., 115 ( D7 ), D07,305, doi: 10.1029/2009JD012943.en_US
dc.identifier.citedreferenceHansen J., and L. Nazarenko ( 2004 ), Soot climate forcing via snow and ice albedos, Proc. Natl. Acad. Sci., 101 ( 2 ), 423 – 428, doi: 10.1073/pnas.2237157100.en_US
dc.identifier.citedreferenceHansen J., M. Sato, and R. Ruedy ( 1997 ), Radiative forcing and climate response, J. Geophys. Res., 102, 6831 – 6864.en_US
dc.identifier.citedreferenceHansen J. et al. ( 2005 ), Efficacy of climate forcings, J. Geophys. Res., 110, D18104, doi: 10.1029/2005JD005776.en_US
dc.identifier.citedreferenceHaywood J. M., and V. Ramaswamy ( 1998 ), Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols, J. Geophys. Res., 103 ( D6 ), 6043 – 6058.en_US
dc.identifier.citedreferenceHegg D. A., S. G. Warren, T. C. Grenfell, S. J. Doherty, T. V. Larson, and A. D. Clarke ( 2009 ), Source attribution of black carbon in Arctic snow, Environ. Sci. Technol., 43, 4016 – 4021, doi: 10.1021/es803623f.en_US
dc.identifier.citedreferenceHirdman D., J. F. Burkhart, H. Sodemann, S. Eckhardt, A. Jefferson, P. K. Quinn, S. Sharma, J. Ström, and A. Stohl ( 2010 ), Long‐term trends of black carbon and sulphate aerosol in the arctic: Changes in atmospheric transport and source region emissions, Atmos. Chem. Phys., 10 ( 19 ), 9351 – 9368, doi: 10.5194/acp‐10‐9351‐2010.en_US
dc.identifier.citedreferenceHolland M., D. A. Bailey, B. P. Briegleb, B. Light, E. Hunke ( 2012 ), Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice, J. Climate, 25, 1413 – 1430, doi: 10.1175/JCLI‐D‐11‐00078.1.en_US
dc.identifier.citedreferenceJacobson M. Z. ( 2004 ), Climate response of fossil fuel and biofuel soot, accounting for soot's feedback to snow and sea ice albedo and emissivity, J. Geophys. Res., 109, D21201, doi: 10.1029/2004JD004945.en_US
dc.identifier.citedreferenceJacobson M. Z. ( 2010 ), Short‐term effects of controlling fossil‐fuel soot, biofuel soot and gases, and methane on climate, arctic ice, and air pollution health, J. Geophys. Res., 115, D14209, doi: 10.1029/2009JD013795.en_US
dc.identifier.citedreferenceJohnson B. T., K. P. Shine, and P. M. Forster ( 2004 ), The semi‐direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus, Q. J. R. Meteorol. Soc., 130 ( 599 ), 1407 – 1422, doi: 10.1256/qj.03.61.en_US
dc.identifier.citedreferenceKay J. E., and A. Gettelman ( 2009 ), Cloud influence on and response to seasonal arctic sea ice loss, J. Geophys. Res., 114, D18204, doi: 10.1029/2009JD011773.en_US
dc.identifier.citedreferenceKay J. E., M. M. Holland, C. M. Bitz, E. Blanchard‐Wrigglesworth, A. Gettelman, A. Conley, and D. Bailey ( 2012a ), The influence of local feedbacks and northward heat transport on the equilibrium Arctic climate response to increased greenhouse gas forcing, J. Climate, 25, 5433 – 5450, doi: 10.1175/JCLI‐D‐11‐00622.1.en_US
dc.identifier.citedreferenceKay J. E., et al. ( 2012b ), Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators, J. Climate, 25, 5190 – 5207, doi: 10.1175/JCLI‐D‐11‐00469.1.en_US
dc.identifier.citedreferenceKoch D., and J. Hansen ( 2005 ), Distant origins of Arctic black carbon: A Goddard Institute for Space Studies Model E experiment, J. Geophys. Res., 110, D04204, doi: 10.1029/2004JD005296.en_US
dc.identifier.citedreferenceKoch D., T. C. Bond, D. Streets, N. Unger, G.R. van der Werf ( 2007 ), Global impacts of aerosols from particular source regions and sectors, J. Geophys. Res., 112, D02205, doi: 10.1029/2005JD007024.en_US
dc.identifier.citedreferenceKoch D., S. Menon, A. D. Genio, R. Ruedy, I. Alienov, and G. A. Schmidt ( 2009a ), Distinguishing aerosol impacts on climate over the past century, J. Climate, 22, 2659 – 2677, doi: 10.1175/2008JCLI2573.1.en_US
dc.identifier.citedreferenceKoch D., et al. ( 2009b ), Evaluation of black carbon estimations in global aerosol models, Atmos. Chem. Phys., 9 ( 22 ), 9001 – 9026, doi: 10.5194/acp‐9‐9001‐2009.en_US
dc.identifier.citedreferenceLamarque J. ‐F., et al. ( 2010 ), Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10 ( 15 ), 7017 – 7039, doi: 10.5194/acp‐10‐7017‐2010.en_US
dc.identifier.citedreferenceLawrence D., et al. ( 2011 ), Parameterization improvements and functional and structural advances in version 4 of the community land model, J. Adv. Model. Earth Syst., 3 ( 45 ), 1 – 27, doi: 10.1029/JAMES.2011.3.45.en_US
dc.identifier.citedreferenceLiu J., S. Fan, L. W. Horowitz, and H. Levy II ( 2011 ), Evaluation of factors controlling long‐range transport of black carbon to the Arctic, J. Geophys. Res., 116 ( D4 ), D04307, DOI: 10.1029/2010JD015145.en_US
dc.identifier.citedreferenceLiu X., et al. ( 2012 ), Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5, Geosci. Model Dev., 5 ( 3 ), 709 – 739, doi: 10.5194/gmd‐5‐709‐2012.en_US
dc.identifier.citedreferenceLubin D., and A. M. Vogelmann ( 2006 ), A climatologically significant aerosol longwave indirect effect in the Arctic, Nature, 439 ( 7075 ), 453 – 456, doi: 10.1038/nature04449.en_US
dc.identifier.citedreferenceMacCracken M. C., R.D. Cess, and G. L. Potter ( 1986 ), Climatic effects of anthropogenic Arctic aerosols: An illustration of climate feedback mechanisms with one‐and two‐dimensional climate models, J. Geophys. Res., 91 ( D13 ), 14,445 – 14,450.en_US
dc.identifier.citedreferenceMcConnell J. R., et al. ( 2007 ), 20th‐century industrial black carbon emissions altered Arctic climate forcing, Science, 317, 1381 – 1384, doi: 10.1126/science.1144856.en_US
dc.identifier.citedreferenceMcNaughton C. S., et al. ( 2011 ), Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns, Atmos. Chem. Phys., 11 ( 15 ), 7561 – 7582, doi: 10.5194/acp‐11‐7561‐2011.en_US
dc.identifier.citedreferenceMedeiros B., C. Deser, R. A. Tomas, J. E. Kay ( 2011 ), Arctic inversion strength in climate models, J. Climate, 24 ( 17 ), 4733 – 4740, doi: 10.1175/2011JCLI3968.1.en_US
dc.identifier.citedreferenceMing Y., V. Ramaswamy, and G. Persad ( 2010 ), Two opposing effects of absorbing aerosols on global‐mean precipitation, Geophys. Res. Lett., 37, L13701, doi: 10.1029/2010GL042895.en_US
dc.identifier.citedreferenceOleson K. W., et al. ( 2010 ), Technical description of version 4.0 of the Community Land Model (CLM), Tech. Rep. NCAR/TN–478+STR, National Center for Atmospheric Research.en_US
dc.identifier.citedreferencePeixóto J. P., and A. H. Oort ( 1992 ), Phys. Clim., 520 pp., American Institute of Physics, Melville, New York.en_US
dc.identifier.citedreferencePenner J. E., C.C. Chuang, and K. Grant ( 1998 ), Climate forcing by carbonaceous and sulfate aerosols, Climate Dyn., 14, 839 – 851.en_US
dc.identifier.citedreferencePenner J. E., S. Y. Zhang, and C.C. Chuang ( 2003 ), Soot and smoke aerosol may not warm climate, J. Geophys. Res., 108 ( D21, 4657 ), doi: 10.1029/2003JD003409.en_US
dc.identifier.citedreferencePerovich D. K., T. C. Grenfell, B. Light, P.V. Hobbs ( 2002 ), Seasonal evolution of the albedo of multiyear Arctic sea ice, J. Geophys. Res., 107 ( C10 ), doi: 10.1029/2000JC000438.en_US
dc.identifier.citedreferenceQuinn P. K., T. L. Miller, T. S. Bates, J. A. Ogren, E. Andrews, G. E. Shaw ( 2002 ), A 3‐year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska, J. Geophys. Res., 107 ( D11 ), 4130, doi: 10.1029/2001JD001248.en_US
dc.identifier.citedreferenceQuinn P. K., et al. ( 2008 ), Short‐lived pollutants in the Arctic: Their climate impact and possible mitigation strategies, Atmos. Chem. Phys., 8 ( 6 ), 1723 – 1735, doi: 10.5194/acp‐8‐1723‐2008.en_US
dc.identifier.citedreferenceRasch P. J., and J. E. Kristjánsson ( 1998 ), A comparison of the CCM3 climate model using using diagnosed and predicted condensate parameterizations, J. Climate, 11, 1587 – 1614.en_US
dc.identifier.citedreferenceRasch P. J., M.C. Barth, J. T. Kiehl, S. E. Schwartz, C. M. Benkovitz ( 2000 ), A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, J. Geophys. Res., 105, 1367 – 1385.en_US
dc.identifier.citedreferenceReddy M. S., and O. Boucher ( 2007 ), Climate impact of black carbon emitted from energy consumption in the world's regions, Geophys. Res. Lett., 34, L11802, doi: 10.1029/2006GL028904.en_US
dc.identifier.citedreferenceRinke A., K. Dethloff, and M. Fortmann ( 2004 ), Regional climate effects of Arctic Haze, Geophys. Res. Lett., 31 ( 16 ), L16,202, doi: 10.1029/2004GL020318.en_US
dc.identifier.citedreferenceRobock A., L. Oman, and G. L. Stenchikov ( 2008 ), Regional climate responses to geoengineering with tropical and Arctic SO2 injections, J. Geophys. Res., 113 ( D16 ), D16,101, doi: 10.1029/2008JD010050.en_US
dc.identifier.citedreferenceSand M., T. K. Berntsen, J. E. Kay, J. F. Lamarque, Ø. Seland, and A. Kirkevåg ( 2013 ), The arctic response to remote and local forcing of black carbon, Atmos. Chem. Phys., 13 ( 1 ), 211 – 224, doi: 10.5194/acp‐13‐211‐2013.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.