Show simple item record

Children's Oncology Group's 2013 blueprint for research: Non‐Hodgkin lymphoma

dc.contributor.authorBollard, Catherine M.en_US
dc.contributor.authorLim, Megan S.en_US
dc.contributor.authorGross, Thomas G.en_US
dc.date.accessioned2013-05-02T19:35:08Z
dc.date.available2014-08-01T19:11:35Zen_US
dc.date.issued2013-06en_US
dc.identifier.citationBollard, Catherine M.; Lim, Megan S.; Gross, Thomas G. (2013). "Children's Oncology Group's 2013 blueprint for research: Non‐Hodgkin lymphoma." Pediatric Blood & Cancer 60(6): 979-984. <http://hdl.handle.net/2027.42/97477>en_US
dc.identifier.issn1545-5009en_US
dc.identifier.issn1545-5017en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97477
dc.description.abstractNon‐Hodgkin lymphomas account for approximately 7% of cancers diagnosed in patients less than 20 years of age, with approximately 800 cases diagnosed annually at COG institutions. With current therapies, cure rates range from 70% to over 90%, even for children with disseminated disease. However, two major challenges need to be overcome: (i) to optimize upfront treatment to prevent relapse since prognosis for patients with relapsed disease remains poor and (ii) minimize long‐term side effects in survivors. Hence, the future initiatives for the treatment of pediatric NHL are to utilize novel targeted therapies to not only improve outcomes but to decrease bystander organ toxicities and late effects. Pediatr Blood Cancer 2013; 60: 979–984. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherLymphomaen_US
dc.subject.otherChildrenen_US
dc.subject.otherChildren's Oncology Groupen_US
dc.titleChildren's Oncology Group's 2013 blueprint for research: Non‐Hodgkin lymphomaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPediatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pathology, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDivision of Pediatric Hematology and Oncology, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, Texasen_US
dc.contributor.affiliationotherDivision of Pediatric Hematology and Oncology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohioen_US
dc.contributor.affiliationotherDepartment of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street, Suite 1770.01, Houston, TX 77030.en_US
dc.identifier.pmid23255391en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97477/1/24416_ftp.pdf
dc.identifier.doi10.1002/pbc.24416en_US
dc.identifier.sourcePediatric Blood & Canceren_US
dc.identifier.citedreferenceWalter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T‐cell clones from the donor. N Engl J Med 1995; 333: 1038 – 1044.en_US
dc.identifier.citedreferenceDeffenbacher KE, Iqbal J, Sanger W, et al. Molecular distinctions between pediatric and adult mature B‐cell non‐Hodgkin lymphomas identified through genomic profiling. Blood 2012; 119: 3757 – 3766.en_US
dc.identifier.citedreferenceGriffin TC, Weitzman S, Weinstein H, et al. A study of rituximab and ifosfamide, carboplatin, and etoposide chemotherapy in children with recurrent/refractory B‐cell (CD20+) non‐Hodgkin lymphoma and mature B‐cell acute lymphoblastic leukemia: A report from the children's oncology group. Pediatr Blood Cancer 2009; 52: 177 – 181.en_US
dc.identifier.citedreferenceAbromowitch M, Termuhlen A, Chang M, et al. High‐dose methotrexate and early intensification of therapy do not improve 3 year EFS in children and adolescents with disseminated lymphoblastic lymphoma. Results of the randomized arms of COG A5971 [Abstract]. Blood 2008; 112: 3610.en_US
dc.identifier.citedreferenceTermuhlen AM, Smith LM, Perkins SL, et al. Outcome of newly diagnosed children and adolescents with localized lymphoblastic lymphoma treated on children's oncology group trial A5971: A report from the children's oncology group. Pediatr Blood Cancer 2012; 59: 1229 – 1233.en_US
dc.identifier.citedreferenceDunleavy K, Pittaluga S, Tay K, et al. Comparative clinical and biological features of primary mediastinal B‐Cell lymphoma (PMBL) and mediastinal grey zone lymphoma (MGZL) [abstract]. Blood 2009; 114: abstract 106.en_US
dc.identifier.citedreferencePapadopoulos EB, Ladanyi M, Emanuel D, et al. Infusions of donor leukocytes to treat Epstein–Barr virus‐associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 1994; 330: 1185 – 1191.en_US
dc.identifier.citedreferencePorter DL, Antin JH. The graft‐versus‐leukemia effects of allogeneic cell therapy. Annu Rev Med 1999; 50: 369 – 386.en_US
dc.identifier.citedreferenceGottschalk S, Rooney CM, Heslop HE. Post‐transplant lymphoproliferative disorders. Annu Rev Med 2005; 56: 29 – 44.en_US
dc.identifier.citedreferenceKolb HJ, Schmid C, Barrett AJ, et al. Graft‐versus‐leukemia reactions in allogeneic chimeras. Blood 2004; 103: 767 – 776.en_US
dc.identifier.citedreferenceKalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3: 95ra 73.en_US
dc.identifier.citedreferenceSavoldo B, Goss JA, Hammer MM, et al. Treatment of solid organ transplant recipients with autologous Epstein–Barr virus‐specific cytotoxic T lymphocytes (CTLs). Blood 2006; 108: 2942 – 2949.en_US
dc.identifier.citedreferenceComoli P, Labirio M, Basso S, et al. Infusion of autologous Epstein–Barr virus (EBV)‐specific cytotoxic T cells for prevention of EBV‐related lymphoproliferative disorder in solid organ transplant recipients with evidence of active virus replication. Blood 2002; 99: 2592 – 2598.en_US
dc.identifier.citedreferenceKhanna R, Bell S, Sherritt M, et al. Activation and adoptive transfer of Epstein–Barr virus‐specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci USA 1999; 96: 10391 – 10396.en_US
dc.identifier.citedreferenceSherritt MA, Bharadwaj M, Burrows JM, et al. Reconstitution of the latent T‐lymphocyte response to Epstein–Barr virus is coincident with long‐term recovery from posttransplant lymphoma after adoptive immunotherapy. Transplantation 2003; 75: 1556 – 1560.en_US
dc.identifier.citedreferenceHaque T, Taylor C, Wilkie GM, et al. Complete regression of posttransplant lymphoproliferative disease using partially HLA‐matched Epstein–Barr virus‐specific cytotoxic T cells. Transplantation 2001; 72: 1399 – 1402.en_US
dc.identifier.citedreferenceHaque T, Wilkie GM, Taylor C, et al. Treatment of Epstein–Barr‐virus‐positive post‐transplantation lymphoproliferative disease with partly HLA‐matched allogeneic cytotoxic T cells. Lancet 2002; 360: 436 – 442.en_US
dc.identifier.citedreferenceHaque T, Wilkie GM, Jones MM, et al. Allogeneic cytotoxic T‐cell therapy for EBV‐positive posttransplantation lymphoproliferative disease: Results of a phase 2 multicenter clinical trial. Blood 2007; 110: 1123 – 1131.en_US
dc.identifier.citedreferenceSun Q, Burton R, Reddy V, et al. Safety of allogeneic Epstein–Barr virus (EBV)‐specific cytotoxic T lymphocytes for patients with refractory EBV‐related lymphoma. Br J Haematol 2002; 118: 799 – 808.en_US
dc.identifier.citedreferenceBarker JN, Doubrovina E, Sauter C, et al. Successful treatment of EBV‐associated posttransplantation lymphoma after cord blood transplantation using third‐party EBV‐specific cytotoxic T lymphocytes. Blood 2010; 116: 5045 – 5049.en_US
dc.identifier.citedreferenceLeen AM, Myers GD, Sili U, et al. Monoculture‐derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 2006; 12: 1160 – 1166.en_US
dc.identifier.citedreferenceDoubrovina E, Oflaz‐Sozmen B, Prockop SE, et al. Adoptive immunotherapy with unselected or EBV‐specific T cells for biopsy‐proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood 2012; 119: 2644 – 2656.en_US
dc.identifier.citedreferenceLeen AM, Bollard CM, Mendizabal AM, et al. Most closely HLA‐matched allogeneic virus specific cytotoxic T‐lymphocytes (CTL) to treat persistent reactivation or infection with adenovirus, CMV and EBV after hemopoietic stem cell transplantation (HSCT) [abstract]. Blood 2010; 116: A829.en_US
dc.identifier.citedreferenceBrugieres L, Pacquement H. Le Deley MC et al. Single‐drug vinblastine as salvage treatment for refractory or relapsed anaplastic large‐cell lymphoma: A report from the French Society of Pediatric Oncology. J Clin Oncol 2009; 27: 5056 – 5061.en_US
dc.identifier.citedreferenceFilipovich AH, Heinitz KJ, Robison LL, et al. The immunodeficiency cancer registry A research resource. Am J Pediatr Hematol Oncol 1987; 9: 183 – 184.en_US
dc.identifier.citedreferenceReiter A, Schrappe M, Ludwig WD, et al. Intensive ALL‐type therapy without local radiotherapy provides a 90% event‐free survival for children with T‐cell lymphoblastic lymphoma: A BFM group report. Blood 2000; 95: 416 – 421.en_US
dc.identifier.citedreferenceCoustan‐Smith E, Sandlund JT, Perkins SL, et al. Minimal disseminated disease in childhood T‐cell lymphoblastic lymphoma: A report from the children's oncology group. J Clin Oncol 2009; 27: 3533 – 3539.en_US
dc.identifier.citedreferenceSandlund JT, Pui CH, Zhou Y, et al. Effective treatment of advanced‐stage childhood lymphoblastic lymphoma without prophylactic cranial irradiation: Results of St Jude NHL13 study. Leukemia 2009; 23: 1127 – 1130.en_US
dc.identifier.citedreferenceBurkhardt B, Woessmann W, Zimmermann M, et al. Impact of cranial radiotherapy on central nervous system prophylaxis in children and adolescents with central nervous system‐negative stage III or IV lymphoblastic lymphoma. J Clin Oncol 2006; 24: 491 – 499.en_US
dc.identifier.citedreferenceDucassou S, Ferlay C, Bergeron C, et al. Clinical presentation, evolution, and prognosis of precursor B‐cell lymphoblastic lymphoma in trials LMT96 EORTC 58881 and EORTC 58951. Br J Haematol 2011; 152: 441 – 451.en_US
dc.identifier.citedreferenceAsselin BL, Devidas M, Wang C, et al. Effectiveness of high‐dose methotrexate in T‐cell lymphoblastic leukemia and advanced‐stage lymphoblastic lymphoma: A randomized study by the children's oncology group (POG 9404). Blood 2011; 118: 874 – 883.en_US
dc.identifier.citedreferencePatte C, Auperin A, Michon J, et al. The Societe Francaise d'Oncologie Pediatrique LMB89 protocol: Highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B‐cell lymphomas and L3 leukemia. Blood 2001; 97: 3370 – 3379.en_US
dc.identifier.citedreferenceMiles RR, Raphael M, McCarthy K, et al. Pediatric diffuse large B‐cell lymphoma demonstrates a high proliferation index, frequent c‐Myc protein expression, and a high incidence of germinal center subtype: Report of the French–American–British (FAB) international study group. Pediatr Blood Cancer 2008; 51: 369 – 374.en_US
dc.identifier.citedreferencePatte C, Auperin A, Gerrard M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B‐cell non‐Hodgkin lymphoma in children and adolescents: It is possible to reduce treatment for the early responding patients. Blood 2007; 109: 2773 – 2780.en_US
dc.identifier.citedreferenceSeidemann K, Tiemann M, Lauterbach I, et al. Primary mediastinal large B‐cell lymphoma with sclerosis in pediatric and adolescent patients: Treatment and results from three therapeutic studies of the Berlin–Frankfurt–Munster Group. J Clin Oncol 2003; 21: 1782 – 1789.en_US
dc.identifier.citedreferenceReiter A, Klapper W. Recent advances in the understanding and management of diffuse large B‐cell lymphoma in children. Br J Haematol 2008; 142: 329 – 347.en_US
dc.identifier.citedreferenceSalzburg J, Burkhardt B, Zimmermann M, et al. Prevalence, clinical pattern, and outcome of CNS involvement in childhood and adolescent non‐Hodgkin's lymphoma differ by non‐Hodgkin's lymphoma subtype: A Berlin–Frankfurt–Munster Group Report. J Clin Oncol 2007; 25: 3915 – 3922.en_US
dc.identifier.citedreferenceKadin ME. Primary Ki‐1‐positive anaplastic large‐cell lymphoma: A distinct clinicopathologic entity. Ann Oncol 1994; 5: 25 – 30.en_US
dc.identifier.citedreferenceMurphy SB. Pediatric lymphomas: Recent advances and commentary on Ki‐1‐positive anaplastic large‐cell lymphomas of childhood. Ann Oncol 1994; 5: 31 – 33.en_US
dc.identifier.citedreferenceLowe EJ, Sposto R, Perkins SL, et al. Intensive chemotherapy for systemic anaplastic large cell lymphoma in children and adolescents: Final results of Children's Cancer Group Study 5941. Pediatr Blood Cancer 2009; 52: 335 – 339.en_US
dc.identifier.citedreferenceLink MP, Shuster JJ, Donaldson SS, et al. Treatment of children and young adults with early‐stage non‐Hodgkin's lymphoma. N Engl J Med 1997; 337: 1259 – 1266.en_US
dc.identifier.citedreferenceLe Deley MC, Reiter A, Williams D, et al. Prognostic factors in childhood anaplastic large cell lymphoma: Results of a large European intergroup study. Blood 2008; 111: 1560 – 1566.en_US
dc.identifier.citedreferenceKraveka J, Weitzman S, Smith L, et al. Advanced‐stage anaplastic large‐cell lymphoma in children adolescents: Results of ANHL0131, a randomized phase III trial with standard APO (doxorubicin, prednisone, vincristine) versus consolidation with a regimen including vinblastine: A report from the children's oncology group [abstract]. J Clin Oncol 2010; 28: 680.en_US
dc.identifier.citedreferenceLe Deley MC, Rosolen A, Williams DM, et al. Vinblastine in children and adolescents with high‐risk anaplastic large‐cell lymphoma: Results of the randomized ALCL99‐vinblastine trial. J Clin Oncol 2010; 28: 3987 – 3993.en_US
dc.identifier.citedreferenceWrobel G, Mauguen A, Rosolen A, et al. Safety assessment of intensive induction therapy in childhood anaplastic large cell lymphoma: Report of the ALCL99 randomised trial. Pediatr Blood Cancer 2011; 56: 1071 – 1077.en_US
dc.identifier.citedreferencePro B, Advani R, Brice P, et al. Brentuximab vedotin (SGN‐35) in patients with relapsed or refractory systemic anaplastic large‐cell lymphoma: Results of a phase II study. J Clin Oncol 2012; 30: 2190 – 2196.en_US
dc.identifier.citedreferenceMosse YP, Balis FM, Lim MS, et al. Efficacy of crizotinib in children with relapsed/refractory ALK‐driven tumors including anaplastic large cell lymphoma and neuroblastoma: A children's oncology group phase I consortium study [abstract]. J Clin Oncol 2012; 30: 9500.en_US
dc.identifier.citedreferenceGross TG, Orjuela MA, Perkins SL, et al. Low‐dose chemotherapy and rituximab for posttransplant lymphoproliferative disease (PTLD): A children's oncology group report. Am J Transplant 2012; 11: 3069 – 3075.en_US
dc.identifier.citedreferenceCoiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large‐B‐cell lymphoma. N Engl J Med 2002; 346: 235 – 242.en_US
dc.identifier.citedreferencePfreundschuh M, Trumper L, Osterborg A, et al. CHOP‐like chemotherapy plus rituximab versus CHOP‐like chemotherapy alone in young patients with good‐prognosis diffuse large‐B‐cell lymphoma: A randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol 2006; 7: 379 – 391.en_US
dc.identifier.citedreferenceThomas DA, Faderl S. O'Brien S et al. Chemoimmunotherapy with hyper‐CVAD plus rituximab for the treatment of adult Burkitt and Burkitt‐type lymphoma or acute lymphoblastic leukemia. Cancer 2006; 106: 1569 – 1580.en_US
dc.identifier.citedreferenceMeinhardt A, Burkhardt B, Zimmermann M, et al. Phase II window study on rituximab in newly diagnosed pediatric mature B‐cell non‐Hodgkin's lymphoma and Burkitt leukemia. J Clin Oncol 2010; 28: 3115 – 3121.en_US
dc.identifier.citedreferenceGoldman S, Smith L, Anderson JR, et al. Rituximab and FAB/LMB 96 chemotherapy in children with Stage III/IV B‐Cell Non‐hodgkin lymphoma: A children's oncology group report. Leukemia 2012; In press (PMID 22990833).en_US
dc.identifier.citedreferenceWilson WH, Jung SH, Porcu P, et al. A Cancer and Leukemia Group B multi‐center study of DA‐EPOCH‐rituximab in untreated diffuse large B‐cell lymphoma with analysis of outcome by molecular subtype. Haematologica 2012; 97: 758 – 765.en_US
dc.identifier.citedreferenceYounes A, Bartlett NL, Leonard JP, et al. Brentuximab vedotin (SGN‐35) for relapsed CD30‐positive lymphomas. N Engl J Med 2010; 363: 1812 – 1821.en_US
dc.identifier.citedreferenceMorris SW, Xue L, Ma Z, et al. Alk+ CD30+ lymphomas: A distinct molecular genetic subtype of non‐Hodgkin's lymphoma. Br J Haematol 2001; 113: 275 – 295.en_US
dc.identifier.citedreferenceGambacorti‐Passerini C, Messa C, Pogliani EM. Crizotinib in anaplastic large‐cell lymphoma. N Engl J Med 2011; 364: 775 – 776.en_US
dc.identifier.citedreferenceBollard CM, Rooney CM, Heslop HE. T‐cell therapy in the treatment of post‐transplant lymphoproliferative disease. Nat Rev Clin Oncol 2012; 9: 510 – 519.en_US
dc.identifier.citedreferenceGoldman S, Galardy P, Smith L, et al. The efficacy of rasburicase and rituximab combined with FAB chemotherapy in children and adolescents with newly diagnosed stage III/IV, BM+ and CNS+ mature B‐NHL: A children's oncology group report [abstract]. Blood 2011; 118: 2072.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.