Show simple item record

Perfluoro‐ tert ‐butyl‐homoserine as a sensitive 19 F NMR reporter for peptide–membrane interactions in solution

dc.contributor.authorBuer, Benjamin C.en_US
dc.contributor.authorLevin, Benjamin J.en_US
dc.contributor.authorMarsh, E. Neil G.en_US
dc.date.accessioned2013-05-02T19:35:12Z
dc.date.available2014-07-01T15:53:32Zen_US
dc.date.issued2013-05en_US
dc.identifier.citationBuer, Benjamin C.; Levin, Benjamin J.; Marsh, E. Neil G. (2013). "Perfluoro‐ tert ‐butyl‐homoserine as a sensitive 19 F NMR reporter for peptide–membrane interactions in solution." Journal of Peptide Science 19(5): 308-314. <http://hdl.handle.net/2027.42/97487>en_US
dc.identifier.issn1075-2617en_US
dc.identifier.issn1099-1387en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97487
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherFluorine NMRen_US
dc.subject.otherFluorinated Proteinen_US
dc.subject.otherMSI‐78en_US
dc.subject.otherAntimicrobial Peptideen_US
dc.titlePerfluoro‐ tert ‐butyl‐homoserine as a sensitive 19 F NMR reporter for peptide–membrane interactions in solutionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23509011en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97487/1/psc2501.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97487/2/psc_2501_supplementary_material.pdf
dc.identifier.doi10.1002/psc.2501en_US
dc.identifier.sourceJournal of Peptide Scienceen_US
dc.identifier.citedreferenceShi P, Wang H, Xi Z, Shi C, Xiong Y, Tian C. Site‐specific 19F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid. Protien Sci. 2011; 20: 224 – 228.en_US
dc.identifier.citedreferenceSuzuki Y, Brender JR, Hartman K, Ramamoorthy A, Marsh ENG. Alternative pathways of human islet amyloid polypeptide aggregation distinguished by 19F NMR‐detected kinetics of monomer consumption. Biochemistry 2012; 51: 8154 – 8162.en_US
dc.identifier.citedreferenceSuzuki Y, Buer BC, Al‐Hashimi HM, Marsh ENG. Using fluorine nuclear magnetic resonance to probe changes in the structure and dynamics of membrane‐active peptides interacting with lipid bilayers. Biochemistry 2011; 50: 5979 – 5987.en_US
dc.identifier.citedreferenceWang GF, Li C, Pielak GJ. 19F NMR studies of α‐synuclein‐membrane interactions. Protein Sci. 2010; 19: 1686 – 1691.en_US
dc.identifier.citedreferenceMaisch D, Wadhwani P, Afonin S, Böttcher C, Koksch B, Ulrich AS. Chemical labeling strategy with (R)‐and (S)‐trifluoromethylalanine for solid state 19F NMR analysis of peptaibols in membranes. J. Am. Chem. Soc. 2009; 131: 15596 – 15597.en_US
dc.identifier.citedreferenceSalwiczek M, Nyakatura EK, Gerling UIM, Ye S, Koksch B. Fluorinated amino acids: compatibility with native protein structures and effects on protein–protein interactions. Chem. Soc. Rev. 2012; 41: 2135 – 2171.en_US
dc.identifier.citedreferenceHagmann WK. The many roles for fluorine in medicinal chemistry. J. Med. Chem. 2008; 51: 4359 – 4369.en_US
dc.identifier.citedreferenceMüller K, Faeh C, Diederich F. Fluorine in pharmaceuticals: looking beyond intuition. Science 2007; 317: 1881 – 1886.en_US
dc.identifier.citedreferenceDuewel H, Daub E, Robinson V, Honek JF. Incorporation of trifluoromethionine into a phage lysozyme: implications and a new marker for use in protein 19F NMR. Biochemistry 1997; 36: 3404 – 3416.en_US
dc.identifier.citedreferenceFuchs PC, Barry AL, Brown SD. In vitro antimicrobial activity of MSI‐78, a magainin analog. Antimicrob. Agents Chemother. 1998; 42: 1213 – 1216.en_US
dc.identifier.citedreferenceGottler LM, Ramamoorthy A. Structure, membrane orientation, mechanism, and function of pexiganan—a highly potent antimicrobial peptide designed from magainin. BBA Biomembranes 2009; 1788: 1680 – 1686.en_US
dc.identifier.citedreferenceHallock KJ, Lee DK, Ramamoorthy A. MSI‐78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys. J. 2003; 84: 3052 – 3060.en_US
dc.identifier.citedreferencePorcelli F, Buck‐Koehntop BA, Thennarasu S, Ramamoorthy A, Veglia G. Structures of the dimeric and monomeric variants of magainin antimicrobial peptides (MSI‐78 and MSI‐594) in micelles and bilayers, determined by NMR spectroscopy. Biochemistry 2006; 45: 5793 – 5799.en_US
dc.identifier.citedreferenceBrogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005; 3: 238 – 250.en_US
dc.identifier.citedreferenceHuang HW. Action of antimicrobial peptides: two‐state model. Biochemistry 2000; 39: 8347 – 8352.en_US
dc.identifier.citedreferenceShai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α‐helical antimicrobial and cell non‐selective membrane‐lytic peptides. BBA Biomembranes 1999; 1462: 55 – 70.en_US
dc.identifier.citedreferenceWimley WC. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol. 2010; 5: 905.en_US
dc.identifier.citedreferenceWu M, Maier E, Benz R, Hancock REW. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 1999; 38: 7235 – 7242.en_US
dc.identifier.citedreferenceShelburne CE, An FY, Dholpe V, Ramamoorthy A, Lopatin DE, Lantz MS. The spectrum of antimicrobial activity of the bacteriocin subtilosin A. J. Antimicrob. Chemother. 2007; 59: 297 – 300. doi: 10.1093/jac/dkl495en_US
dc.identifier.citedreferenceDubois BW, Evers AS. Fluorine‐19 NMR spin‐spin relaxation (T2) method for characterizing volatile anesthetic binding to proteins. analysis of isoflurane binding to serum albumin. Biochemistry 1992; 31: 7069 – 7076.en_US
dc.identifier.citedreferenceLuz Z, Meiboom S. Nuclear magnetic resonance study of the protolysis of trimethylammonium ion in aqueous solution—order of the reaction with respect to solvent. J. Chem. Phys. 1963; 39: 366.en_US
dc.identifier.citedreferenceChiu HP, Suzuki Y, Gullickson D, Ahmad R, Kokona B, Fairman R, Cheng RP. Helix propensity of highly fluorinated amino acids. J. Am. Chem. Soc. 2006; 128: 15556 – 15557.en_US
dc.identifier.citedreferenceGottler LM, Lee HY, Shelburne CE, Ramamoorthy A, Marsh ENG. Using fluorous amino acids to modulate the biological activity of an antimicrobial peptide. Chembiochem 2008; 9: 370 – 373. doi: 10.1002/cbic.200700643|ISSN 1439–4227en_US
dc.identifier.citedreferenceChen HC, Brown JH, Morell JL, Huang C. Synthetic magainin analogues with improved antimicrobial activity. FEBS Lett. 1988; 236: 462 – 466.en_US
dc.identifier.citedreferenceMatsuzaki K, Murase O, Tokuda H, Funakoshi S, Fujii N, Miyajima K. Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry 1994; 33: 3342 – 3349.en_US
dc.identifier.citedreferenceAhmed AH, Loh AP, Jane DE, Oswald RE. Dynamics of the S1S2 glutamate binding domain of GluR2 measured using 19F NMR spectroscopy. J. Biol. Chem. 2007; 282: 12773 – 12784.en_US
dc.identifier.citedreferenceAnderluh G, Razpotnik A, Podlesek Z, Maček P, Separovic F, Norton RS. Interaction of the eukaryotic pore‐forming cytolysin equinatoxin II with model membranes: 19F NMR studies. J. Mol. Biol. 2005; 347: 27 – 39.en_US
dc.identifier.citedreferenceBai P, Luo L, Peng Z. Side chain accessibility and dynamics in the molten globule state of α‐lactalbumin: a 19F‐NMR study. Biochemistry 2000; 39: 372 – 380.en_US
dc.identifier.citedreferenceBuer BC, Chugh J, Al‐Hashimi HM, Marsh ENG. Using fluorine nuclear magnetic resonance to probe the interaction of membrane‐active peptides with the lipid bilayer. Biochemistry 2010; 49: 5760 – 5765.en_US
dc.identifier.citedreferenceBuffy JJ, Waring AJ, Hong M. Determination of peptide oligomerization in lipid bilayers using 19F spin diffusion NMR. J. Am. Chem. Soc. 2005; 127: 4477 – 4483.en_US
dc.identifier.citedreferenceDanielson MA, Falke JJ. Use of 19F NMR to probe protein structure and conformational changes. Annu. Rev. Biophys. Biomol. Struct. 1996; 25: 163.en_US
dc.identifier.citedreferenceGerig J. Fluorine NMR of proteins. Prog. Nucl. Magn. Res. Spectrosc. 1994; 26: 293 – 370.en_US
dc.identifier.citedreferenceIeronimo M, Afonin S, Koch K, Berditsch M, Wadhwani P, Ulrich AS. 19F NMR analysis of the antimicrobial peptide PGLa bound to native cell membranes from bacterial protoplasts and human erythrocytes. J. Am. Chem. Soc. 2010; 132: 8822 – 8824.en_US
dc.identifier.citedreferenceKitevski‐LeBlanc JL, Evanics F, Prosser RS. Approaches for the measurement of solvent exposure in proteins by 19F NMR. J. Biomol. NMR 2009; 45: 255 – 264.en_US
dc.identifier.citedreferenceKitevski‐LeBlanc JL, Prosser RS. Current applications of 19F NMR to studies of protein structure and dynamics. Prog. Nucl. Magn. Res. Spectrosc. 2012; 62: 1 – 33.en_US
dc.identifier.citedreferenceKoch K, Afonin S, Ieronimo M, Berditsch M, Ulrich A. Solid‐state 19F‐NMR of peptides in native membranes. Top. Curr. Chem. 2012; 306: 89 – 118.en_US
dc.identifier.citedreferenceLau E, Gerig J. Origins of fluorine NMR chemical shifts in fluorine‐containing proteins. J. Am. Chem. Soc. 2000; 122: 4408 – 4417.en_US
dc.identifier.citedreferenceLi C, Lutz EA, Slade KM, Ruf RAS, Wang GF, Pielak GJ. 19F NMR studies of α‐synuclein conformation and fibrillation. Biochemistry 2009; 48: 8578 – 8584.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.