Show simple item record

Surface engineering the cellular microenvironment via patterning and gradients

dc.contributor.authorRoss, Aftin M.en_US
dc.contributor.authorLahann, Joergen_US
dc.date.accessioned2013-05-02T19:35:13Z
dc.date.available2014-07-01T15:53:32Zen_US
dc.date.issued2013-05-15en_US
dc.identifier.citationRoss, Aftin M.; Lahann, Joerg (2013). "Surface engineering the cellular microenvironment via patterning and gradients." Journal of Polymer Science Part B: Polymer Physics 51(10): 775-794. <http://hdl.handle.net/2027.42/97492>en_US
dc.identifier.issn0887-6266en_US
dc.identifier.issn1099-0488en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97492
dc.description.abstractCell organization, proliferation, and differentiation are impacted by diverse cues present in the cellular microenvironment. As a result, the surface of a material plays an important role in cellular function. Synthetic surfaces may be augmented by physical as well as chemical means. In particular, patterning and interfacial gradients may be utilized to mitigate the cellular response. Patterning is advantageous as it affords control over a range of feature sizes from several nanometers to millimeters. Gradients exist in vivo , for instance in stem cell niches, and the ability to create interfacial gradients in vitro can provide valuable insights into the influence of a series of minute surface changes on a single sample. This review focuses on fabrication methods for generating micro‐ and nanoscale surface patterns as well as interfacial gradients, the impact of these surface modifications on the cellular response, and the advantages and challenges of these surfaces in in vitro applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys., 2013 The influence of patterning and interfacial gradients on the cellular response has numerous applications in tissue engineering and basic cell science. Various methods for fabricating small‐scale patterns and interfacial gradients as well as their potential and limitations are described. Furthermore, the impact of patterns and gradients on cellular function for numerous cell types and the use of these techniques to address biological questions in in vitro environments are illustrated. Future perspectives are also provided.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherSurfacesen_US
dc.subject.otherBiological Applications of Polymersen_US
dc.subject.otherBioengineeringen_US
dc.titleSurface engineering the cellular microenvironment via patterning and gradientsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherInstitute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann‐von‐Helmholtz‐Platz 1, Eggenstein‐Leopoldshafen 76344, Germanyen_US
dc.contributor.affiliationotherInstitute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann‐von‐Helmholtz‐Platz 1, Eggenstein‐Leopoldshafen 76344, Germanyen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97492/1/23275_ftp.pdf
dc.identifier.doi10.1002/polb.23275en_US
dc.identifier.sourceJournal of Polymer Science Part B: Polymer Physicsen_US
dc.identifier.citedreferenceM. H. Schoenfisch, J. E. Pemberton, J. Am. Chem. Soc. 1998, 120, 4502 – 4513.en_US
dc.identifier.citedreferenceJ. C. Meredith, J. L. Sormana, B. G. Keselowsky, A. J. Garcia, A. Tona, A. Karim, E. J. J. Biomed. Mater. Res. Part A 2003, 66A, 483 – 490.en_US
dc.identifier.citedreferenceX. Y. Lu, J. L. Zhang, C. C. Zhang, Y. C. Han, Macromol. Rapid Commun. 2005, 26, 637 – 642.en_US
dc.identifier.citedreferenceT. P. Kunzler, C. Huwiler, T. Drobek, J. Voeroes, N. D. Spencer, Biomaterials 2007, 28, 5000 – 5006.en_US
dc.identifier.citedreferenceN. R. Washburn, K. M. Yamada, C. G. Simon, S. B. Kennedy, E. J. Amis, Biomaterials 2004, 25, 1215 – 1224.en_US
dc.identifier.citedreferenceA. Curtis, IEEE Trans. Nanobiosci. 2004, 3, 293 – 295.en_US
dc.identifier.citedreferenceA. M. Ross, Z. X. Jiang, M. Bastmeyer, J. Lahann, Small 2012, 8, 336 – 355.en_US
dc.identifier.citedreferenceC. Zink, H. Hall, D. M. Brunette, N. D. Spencer, Biomaterials 2012, 33, 8055 – 8061.en_US
dc.identifier.citedreferenceZ. B. Liu, L. D. Xiao, B. J. Xu, Y. Zhang, A. F. T. Mak, Y. Li, W. Y. Man, M. Yang, Covalently immobilized biomolecule gradient on hydrogel surface using a gradient generating microfluidic device for a quantitative mesenchymal stem cell study. Biomicrofluidics 2012, 6, 24111 – 2411112.en_US
dc.identifier.citedreferenceV. V. Abhyankar, M. A. Lokuta, A. Huttenlocher, D. J. Beebe, Lab Chip 2006, 6, 389 – 393.en_US
dc.identifier.citedreferenceI. Barkefors, S. Thorslund, F. Nikolajeff, J. Kreuger, Lab Chip 2009, 9, 529 – 535.en_US
dc.identifier.citedreferenceM. V. Turturro, G. Papavasiliou, J. Biomater. Sci. Polym. Ed. 2012, 23, 917 – 939.en_US
dc.identifier.citedreferenceT. A. Kapur, M. S. Shoichet, J. Biomed. Mater. Res. Part A 2004, 68A, 235 – 243.en_US
dc.identifier.citedreferenceD. Guarnieri, De A. Capua, M. Ventre, A. Borzacchiello, C. Pedone, D. Marasco, M. Ruvo, P. A. Netti, Acta Biomater. 2010, 6, 2532 – 2539.en_US
dc.identifier.citedreferenceS. A. DeLong, J. J. Moon, J. L. West, Biomaterials 2005, 26, 3227 – 3234.en_US
dc.identifier.citedreferenceJ. K. He, Y. A. Du, J. L. Villa‐Uribe, C. M. Hwang, D. C. Li, A. Khademhosseini, Adv. Funct. Mater. 2010, 20, 131 – 137.en_US
dc.identifier.citedreferenceD. E. Discher, P. Janmey, Y. L. Wang, Science 2005, 310, 1139 – 1143.en_US
dc.identifier.citedreferenceL. A. Flanagan, Y. E. Ju, B. Marg, M. Osterfield, P. A. Janmey, Neuroreport 2002, 13, 2411 – 2415.en_US
dc.identifier.citedreferenceLee‐C. Thedieck, N. Rauch, R. Fiammengo, G. Klein, J. P. Spatz, J. Cell Sci. 2012, 125, 3765 – 3775.en_US
dc.identifier.citedreferenceJ. R. Tse, A. J. Engler, PLoS One 2011, 6, 9.en_US
dc.identifier.citedreferenceT. Luhmann, P. Hanseler, B. Grant, H. Hall, Biomaterials 2009, 30, 4503 – 4512.en_US
dc.identifier.citedreferenceM. C. Dodla, R. V. Bellamkonda, Biomaterials 2008, 29, 33 – 46.en_US
dc.identifier.citedreferenceA. P. Wong, Perez‐R. Castillejos, J. C. Love, G. M. Whitesides, Biomaterials 2008, 29, 1853 – 1861.en_US
dc.identifier.citedreferenceM. C. Dodla, R. V. Bellamkonda, J. Biomed. Mater. Res. Part A 2006, 78A, 213 – 221.en_US
dc.identifier.citedreferenceX. Q. Wang, E. Wenk, X. H. Zhang, L. Meinel, Vunjak‐G. Novakovic, D. L. Kaplan, J. Controlled Release 2009, 134, 81 – 90.en_US
dc.identifier.citedreferenceK. von der Mark, J. Park, S. Bauer, P. Schmuki, Cell Tissue Res 2010, 339, 131 – 153.en_US
dc.identifier.citedreferenceH. Geckil, F. Xu, X. H. Zhang, S. Moon, U. Demirci, Nanomedicine 2010, 5, 469 – 484.en_US
dc.identifier.citedreferenceD. Paripovic, H. Hall‐Bozic, H. A. Klok, J. Mater. Chem. 2012, 22, 19570 – 19578.en_US
dc.identifier.citedreferenceE. Martinez, A. Lagunas, C. A. Mills, S. Rodriguez‐Segui, M. Estevez, S. Oberhansl, J. Comelles, J. Samitier, Nanomedicine 2009, 4, 65 – 82.en_US
dc.identifier.citedreferenceT. Blattler, C. Huwiler, M. Ochsner, B. Stadler, H. Solak, J. Voros, H. M. Grandin, J. Nanosci. Nanotechnol. 2006, 6, 2237 – 2264.en_US
dc.identifier.citedreferenceM. Arnold, V. C. Hirschfeld‐Warneken, T. Lohmueller, P. Heil, J. Bluemmel, E. A. Cavalcanti‐Adam, M. Lopez‐Garcia, P. Walther, H. Kessler, B. Geiger, J. P. Spatz, Nano Lett. 2008, 8, 2063 – 2069.en_US
dc.identifier.citedreferenceC. J. Bettinger, R. Langer, J. T. Borenstein, Angew. Chem. Int. Ed. Engl. 2009, 48, 5406 – 5415.en_US
dc.identifier.citedreferenceJ. D. Wu, Z. W. Mao, H. P. Tan, L. L. Han, T. C. Ren, C. Y. Gao, Interface Focus 2012, 2, 337 – 355.en_US
dc.identifier.citedreferenceK. M. Scully, M. G. Rosenfeld, Science 2002, 295, 2231 – 2235.en_US
dc.identifier.citedreferenceD. Julthongpiput, M. J. Fasolka, W. H. Zhang, T. Nguyen, E. J. Amis, Nano Lett. 2005, 5, 1535 – 1540.en_US
dc.identifier.citedreferenceR. A. Potyrailo, L. Hassib, Rev. Sci. Instrum. 2005, 76, 062225.en_US
dc.identifier.citedreferenceS. Y. Chen, L. M. Smith, Langmuir 2009, 25, 12275 – 12282.en_US
dc.identifier.citedreferenceO. Akbulut, A. A. Yu, F. Stellacci, Chem. Soc. Rev. 2010, 39, 30 – 37.en_US
dc.identifier.citedreferenceT. F. Didar, A. M. Foudeh, M. Tabrizian, Anal. Chem. 2012, 84, 1012 – 1018.en_US
dc.identifier.citedreferenceL. J. Millet, M. E. Stewart, R. G. Nuzzo, M. U. Gillette, Lab Chip 2010, 10, 1525 – 1535.en_US
dc.identifier.citedreferenceD. Wright, B. Rajalingam, J. M. Karp, S. Selvarasah, Y. B. Ling, J. Yeh, R. Langer, M. R. Dokmeci, A. Khademhosseini, J. Biomed. Mater. Res. Part A 2008, 85A, 530 – 538.en_US
dc.identifier.citedreferenceR. Fishler, A. Artzy‐Schnirman, E. Peer, R. Wolchinsky, R. Brener, T. Waks, Z. Eshhar, Y. Reiter, U. Sivan, Nano Lett. 2012, 12, 4992 – 4996.en_US
dc.identifier.citedreferenceH. Y. Chen, M. Hirtz, X. P. Deng, T. Laue, H. Fuchs, J. Lahann, J. Am. Chem. Soc. 2010, 132, 18023 – 18025.en_US
dc.identifier.citedreferenceJ. D. Hoff, L. J. Cheng, E. Meyhofer, L. J. Guo, A. J. Hunt, Nano Lett. 2004, 4, 853 – 857.en_US
dc.identifier.citedreferenceX. Z. Ye, L. M. Qi, Nano Today 2011, 6, 608 – 631.en_US
dc.identifier.citedreferenceW. Dai, Y. Z. Zheng, K. Q. Luo, H. K. Wu, Biomicrofluidics 2010, 4, 024101.en_US
dc.identifier.citedreferenceX. R. Li, M. R. MacEwan, J. W. Xie, D. Siewe, X. Y. Yuan, Y. N. Xia, Adv. Funct. Mater. 2010, 20, 1632 – 1637.en_US
dc.identifier.citedreferenceE. D. Miller, J. A. Phillippi, G. W. Fisher, P. G. Campbell, L. M. Walker, L. E. Weiss, Comb. Chem. High Throughput Screen. 2009, 12, 604 – 618.en_US
dc.identifier.citedreferenceX. L. Guo, C. G. Elliott, Z. Q. Li, Y. Y. Xu, D. W. Hamilton, J. J. Guan, Biomacromolecules 2012, 13, 3262 – 3271.en_US
dc.identifier.citedreferenceM. Kim, T. Kim, Anal. Chem. 2010, 82, 9401 – 9409.en_US
dc.identifier.citedreferenceP. Y. Wang, W. B. Tsai, N. H. Voelcker, Acta Biomater. 2012, 8, 519 – 530.en_US
dc.identifier.citedreferenceA. Ranella, M. Barberoglou, S. Bakogianni, C. Fotakis, E. Stratakis, Acta Biomater. 2010, 6, 2711 – 2720.en_US
dc.identifier.citedreferenceB. Joddar, Y. Ito, J. Mater. Chem. 2011, 21, 13737 – 13755.en_US
dc.identifier.citedreferenceL. Xu, L. Robert, O. Qi, F. Taddei, Y. Chen, A. B. Lindner, D. Baigl, Nano Lett. 2007, 7, 2068 – 2072.en_US
dc.identifier.citedreferenceX. K. Lin, Q. He, J. B. Li, Chem. Soc. Rev. 2012, 41, 3584 – 3593.en_US
dc.identifier.citedreferenceS. Gilles, C. Kaulen, M. Pabst, U. Simon, A. Offenhausser, D. Mayer, Nanotechnology 2011, 22, 295301.en_US
dc.identifier.citedreferenceA. P. Quist, S. Oscarsson, Exp. Opin. Drug Discov. 2010, 5, 569 – 581.en_US
dc.identifier.citedreferenceD. Falconnet, G. Csucs, H. M. Grandin, M. Textor, Biomaterials 2006, 27, 3044 – 3063.en_US
dc.identifier.citedreferenceA. Khademhosseini, R. Langer, J. Borenstein, J. P. Vacanti, Proc. Natl. Acad. Sci. USA 2006, 103, 2480 – 2487.en_US
dc.identifier.citedreferenceN. Patel, R. Padera, G. H. W. Sanders, S. M. Cannizzaro, M. C. Davies, R. Langer, C. J. Roberts, S. J. B. Tendler, P. M. Williams, K. M. Shakesheff, FASEB J. 1998, 12, 1447 – 1454.en_US
dc.identifier.citedreferenceS. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber, G. M. Whitesides, Nature 2001, 411, 1016 – 1016.en_US
dc.identifier.citedreferenceC. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, D. E. Ingber, Science 1997, 276, 1425 – 1428.en_US
dc.identifier.citedreferenceC. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin‐Ferlazzo, L. Couraud, H. Launois, Appl. Surf. Sci. 2000, 164, 111 – 117.en_US
dc.identifier.citedreferenceY. N. Xia, G. M. Whitesides, Annu. Rev. Mater. Sci. 1998, 28, 153 – 184.en_US
dc.identifier.citedreferenceA. Perl, D. N. Reinhoudt, J. Adv. Mater. 2009, 21, 2257 – 2268.en_US
dc.identifier.citedreferenceC. C. Wu, D. N. Reinhoudt, C. Otto, V. Subramaniam, A. H. Velders, Small 2011, 7, 989 – 1002.en_US
dc.identifier.citedreferenceR. C. Schmidt, K. E. Healy, J. Biomed. Mater. Res. Part A 2009, 90A, 1252 – 1261.en_US
dc.identifier.citedreferenceA. L. Hook, N. H. Voelcker, H. Acta Biomater. 2009, 5, 2350 – 2370.en_US
dc.identifier.citedreferenceC. M. Kolodziej, H. D. Maynard, Chem. Mater. 2012, 24, 774 – 780.en_US
dc.identifier.citedreferenceP. M. Mendes, C. L. Yeung, J. A. Preece, Nanoscale Res. Lett. 2007, 2, 373 – 384.en_US
dc.identifier.citedreferenceC. S. Whelan, M. J. Lercel, H. G. Craighead, K. Seshadri, D. L. Allara, Appl. Phys. Lett. 1996, 69, 4245 – 4247.en_US
dc.identifier.citedreferenceH. Hatakeyama, A. Kikuchi, M. Yamato, T. Okano, Biomaterials 2007, 28, 3632 – 3643.en_US
dc.identifier.citedreferenceF. Kantawong, K. E. V. Burgess, K. Jayawardena, A. Hart, R. J. Burchmore, N. Gadegaard, R. O. C. Oreffo, M. J. Dalby, Biomaterials 2009, 30, 4723 – 4731.en_US
dc.identifier.citedreferenceG. Dos Reis, F. Fenili, A. Gianfelice, G. Bongiorno, D. Marchesi, P. E. Scopelliti, A. Borgonovo, A. Podesta, M. Indrieri, E. Ranucci, P. Ferruti, C. Lenardi, P. Milani, Macromol. Biosci. 2010, 10, 842 – 852.en_US
dc.identifier.citedreferenceD. O. Rodgerson, A. G. Harris, Stem Cell Rev. Rep. 2011, 7, 782 – 796.en_US
dc.identifier.citedreferenceH. Takahashi, M. Nakayama, K. Itoga, M. Yamato, T. Okano, Biomacromolecules 2011, 12, 1414 – 1418.en_US
dc.identifier.citedreferenceV. S. Goudar, S. Suran, M. M. Varma, Micro Nano Lett. 2012, 7, 549 – 553.en_US
dc.identifier.citedreferenceP. Bhatnagar, G. G. Malliaras, I. Kim, C. A. Batt, Adv. Mater. 2010, 22, 1242.en_US
dc.identifier.citedreferenceM. J. Brady, A. Davidson, Rev. Sci. Instrum. 1983, 54, 1292 – 1295.en_US
dc.identifier.citedreferenceR. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, G. M. Whitesides, Biomaterials 1999, 20, 2363 – 2376.en_US
dc.identifier.citedreferenceR. Michel, J. W. Lussi, G. Csucs, I. Reviakine, G. Danuser, B. Ketterer, J. A. Hubbell, M. Textor, N. D. Spencer, Langmuir 2002, 18, 3281 – 3287.en_US
dc.identifier.citedreferenceD. Falconnet, A. Koenig, T. Assi, M. Textor, Adv. Funct. Mater. 2004, 14, 749 – 756.en_US
dc.identifier.citedreferenceK. Jang, Y. Xu, K. Sato, Y. Tanaka, K. Mawatari, T. Kitamori, Microchim. Acta 2012, 179, 49 – 55.en_US
dc.identifier.citedreferenceM. S. Hahn, L. J. Taite, J. J. Moon, M. C. Rowland, K. A. Ruffino, J. L. West, Biomaterials 2006, 27, 2519 – 2524.en_US
dc.identifier.citedreferenceC. A. Scotchford, M. Ball, M. Winkelmann, J. Voros, C. Csucs, D. M. Brunette, G. Danuser, M. Textor, Biomaterials 2003, 24, 1147 – 1158.en_US
dc.identifier.citedreferenceM. Kim, J. C. Choi, H. R. Jung, J. S. Katz, M. G. Kim, J. Doh, Langmuir 2010, 26, 12112 – 12118.en_US
dc.identifier.citedreferenceJ. Turkova, J. Chromatogr. B 1999, 722, 11 – 31.en_US
dc.identifier.citedreferenceG. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang, D. E. Ingber, Annu. Rev. Biomed. Eng. 2001, 3, 335 – 373.en_US
dc.identifier.citedreferenceW. Y. Xia, W. Liu, L. Cui, Y. C. Liu, W. Zhong, D. L. Liu, J. J. Wu, K. H. Chua, Y. L. Cao, J. Biomed. Mater. Res. Part B: Appl. Biomater. 2004, 71B, 373 – 380.en_US
dc.identifier.citedreferenceY. N. Xia, G. M. Whitesides, Angew. Chem. Int. Ed. Engl. 1998, 37, 551 – 575.en_US
dc.identifier.citedreferenceG. Csucs, T. Kunzler, K. Feldman, F. Robin, N. D. Spencer, Langmuir 2003, 19, 6104 – 6109.en_US
dc.identifier.citedreferenceD. Lehnert, B. Wehrle‐Haller, C. David, U. Weiland, C. Ballestrem, B. A. Imhof, M. Bastmeyer, J. Cell Sci. 2004, 117, 41 – 52.en_US
dc.identifier.citedreferenceH. Schmid, B. Michel, Macromolecules 2000, 33, 3042 – 3049.en_US
dc.identifier.citedreferenceM. Mayer, J. Yang, I. Gitlin, D. H. Gracias, G. M. Whitesides, Proteomics 2004, 4, 2366 – 2376.en_US
dc.identifier.citedreferenceV. A. Schulte, Y. B. Hu, M. Diez, D. Bunger, M. Moller, M. C. Lensen, Biomaterials 2010, 31, 8583 – 8595.en_US
dc.identifier.citedreferenceT. T. Truong, R. S. Lin, S. Jeon, H. H. Lee, J. Maria, A. Gaur, F. Hua, I. Meinel, J. A. Rogers, Langmuir 2007, 23, 2898 – 2905.en_US
dc.identifier.citedreferenceX. X. Li, S. Hou, X. Z. Feng, Y. Yu, J. J. Ma, L. Y. Li, Colloids Surf. B:Biointerfaces 2009, 74, 370 – 374.en_US
dc.identifier.citedreferenceY. D. Teng, E. B. Lavik, X. L. Qu, K. I. Park, J. Ourednik, D. Zurakowski, R. Langer, E. Y. Snyder, Proc. Natl. Acad. Sci. USA 2002, 99, 9606 – 9606.en_US
dc.identifier.citedreferenceR. Lovchik, C. von Arx, A. Viviani, E. Delamarche, Anal. Bioanal. Chem. 2008, 390, 801 – 808.en_US
dc.identifier.citedreferenceM. Mrksich, G. M. Whitesides, Annu. Rev. Biophys. Biomol. Struct. 1996, 25, 55 – 78.en_US
dc.identifier.citedreferenceT. A. Petrie, B. T. Stanley, A. J. Garcia, J. Biomed. Mater. Res. Part A 2009, 90A, 755 – 765.en_US
dc.identifier.citedreferenceN. T. Flynn, T. N. T. Tran, M. J. Cima, R. Langer, Langmuir 2003, 19, 10909 – 10915.en_US
dc.identifier.citedreferenceD. L. Wilson, R. Martin, S. Hong, M. Cronin‐Golomb, C. A. Mirkin, D. L. Kaplan, Proc. Natl. Acad. Sci. USA 2001, 98, 13660 – 13664.en_US
dc.identifier.citedreferenceG. Agarwal, L. A. Sowards, R. R. Naik, M. O. Stone, J. Am. Chem. Soc. 2003, 125, 580 – 583.en_US
dc.identifier.citedreferenceD. S. Ginger, H. Zhang, C. A. Mirkin, Angew. Chem. Int. Ed. Engl. 2004, 43, 30 – 45.en_US
dc.identifier.citedreferenceC. L. Cheung, J. A. Camarero, B. W. Woods, T. W. Lin, J. E. Johnson, De J. J. Yoreo, J. Am. Chem. Soc. 2003, 125, 6848 – 6849.en_US
dc.identifier.citedreferenceJ. H. Lim, D. S. Ginger, K. B. Lee, J. Heo, J. M. Nam, C. A. Mirkin, Angew. Chem. Int. Ed. Engl. 2003, 42, 2309 – 2312.en_US
dc.identifier.citedreferenceL. M. Demers, D. S. Ginger, S. J. Park, Z. Li, S. W. Chung, C. A. Mirkin, Science 2002, 296, 1836 – 1838.en_US
dc.identifier.citedreferenceS. Sekula, J. Fuchs, S. Weg‐Remers, P. Nagel, S. Schuppler, J. Fragala, N. Theilacker, M. Franueb, C. Wingren, P. Ellmark, C. A. K. Borrebaeck, C. A. Mirkin, H. Fuchs, S. Lenhert, Small 2008, 4, 1785 – 1793.en_US
dc.identifier.citedreferenceJ. M. Curran, R. Stokes, E. Irvine, D. Graham, N. A. Amro, R. G. Sanedrin, H. Jamil, J. A. Hunt, Lab Chip 2010, 10, 1662 – 1670.en_US
dc.identifier.citedreferenceS. M. Yang, S. G. Jang, D. G. Choi, S. Kim, H. K. Yu, Small 2006, 2, 458 – 475.en_US
dc.identifier.citedreferenceM. A. Wood, J. R. Soc. Interface 2007, 4, 1 – 17.en_US
dc.identifier.citedreferenceJ. R. Jeong, S. Kim, S. H. Kim, J. A. C. Bland, S. C. Shin, S. M. Yang, Small 2007, 3, 1529 – 1533.en_US
dc.identifier.citedreferenceJ. Malmstrom, B. Christensen, H. P. Jakobsen, J. Lovmand, R. Foldbjerg, E. S. Sárensen, D. S. Sutherland, Nano Lett. 2010, 10, 686 – 694.en_US
dc.identifier.citedreferenceN. Walter, C. Selhuber, H. Kessler, J. P. Spatz, Nano Lett. 2006, 6, 398 – 402.en_US
dc.identifier.citedreferenceM. J. Dalby, R. O. C. Oreffo, In Stem Cell Engineering: Principles and Applications; Springer: New York, 2011; pp 247 – 258.en_US
dc.identifier.citedreferenceH. Andersson, A. van den Berg, Lab Chip 2004, 4, 98 – 103.en_US
dc.identifier.citedreferenceT. H. Park, M. L. Shuler, Biotechnol. Prog. 2003, 19, 243 – 253.en_US
dc.identifier.citedreferenceS. H. Lee, A. J. Heinz, S. Shin, Y. G. Jung, S. E. Choi, W. Park, J. H. Roe, S. Kwon, Anal. Chem. 2010, 82, 2900 – 2906.en_US
dc.identifier.citedreferenceG. A. Hudalla, W. L. Murphy, Soft Matter 2011, 7, 9561 – 9571.en_US
dc.identifier.citedreferenceJ. T. Koepsel, W. L. Murphy, Langmuir 2009, 25, 12825 – 12834.en_US
dc.identifier.citedreferenceA. G. Mikos, S. W. Herring, P. Ochareon, J. Elisseeff, H. H. Lu, R. Kandel, F. J. Schoen, M. Toner, D. Mooney, A. Atala, M. E. Van Dyke, D. Kaplan, G. Vunjak‐Novakovic, Tissue Eng. 2006, 12, 3307 – 3339.en_US
dc.identifier.citedreferenceC. A. Toro, L. A. Arias, S. Brauchi, Curr. Pharm. Biotechnol. 2011, 12, 12 – 23.en_US
dc.identifier.citedreferenceT. M. Keenan, A. Folch, Lab Chip 2008, 8, 34 – 57.en_US
dc.identifier.citedreferenceK. Rajan, In Annual Review of Materials Research; Annual Reviews, 2008; Vol. 38, pp 299 – 322.en_US
dc.identifier.citedreferenceJ. Genzer, R. R. Bhat, Langmuir 2008, 24, 2294 – 2317.en_US
dc.identifier.citedreferenceD. Geblinger, C. Zink, N. D. Spencer, L. Addadi, B. Geiger, J. R. Soc. Interface 2012, 9, 1599 – 1608.en_US
dc.identifier.citedreferenceJ. L. Zhang, L. J. Xue, Y. C. Han, Langmuir 2005, 21, 5667 – 5671.en_US
dc.identifier.citedreferenceS. L. Zhang, B. You, G. X. Gu, L. M. Wu, Polymer 2009, 50, 6235 – 6244.en_US
dc.identifier.citedreferenceA. Lagunas, J. Comelles, E. Martinez, J. Samitier, Langmuir 2010, 26, 14154 – 14161.en_US
dc.identifier.citedreferenceJ. Genzer, In Annual Review of Materials Research; Annual Reviews, 2012; Vol. 42, pp 435 – 468.en_US
dc.identifier.citedreferenceB. P. Harris, J. K. Kutty, E. W. Fritz, C. K. Webb, K. J. L. Burg, A. T. Metters, Langmuir 2006, 22, 4467 – 4471.en_US
dc.identifier.citedreferenceN. M. Moore, N. J. Lin, N. D. Gallant, M. L. Becker, Biomaterials 2010, 31, 1604 – 1611.en_US
dc.identifier.citedreferenceY. Elkasabi, J. Lahann, Macromol. Rapid Commun. 2009, 30, 57 – 63.en_US
dc.identifier.citedreferenceY. M. Elkasabi, J. Lahann, P. H. Krebsbach, Biomaterials 2011, 32, 1809 – 1815.en_US
dc.identifier.citedreferenceH. Yamazoe, T. Tanabe, J. Biomed. Mater. Res. Part A 2009, 91A, 1202 – 1209.en_US
dc.identifier.citedreferenceN. L. Jeon, H. Baskaran, S. K. W. Dertinger, G. M. Whitesides, L. Van de Water, M. Toner, Nat. Biotechnol. 2002, 20, 826 – 830.en_US
dc.identifier.citedreferenceL. J. Millet, M. E. Stewart, R. G. Nuzzo, M. U. Gillette, Lab Chip 10, 1525 – 1535.en_US
dc.identifier.citedreferenceJ. B. Gurdon, P. Y. Bourillot, Nature 2001, 413, 797 – 803.en_US
dc.identifier.citedreferenceS. K. W. Dertinger, X. Y. Jiang, Z. Y. Li, V. N. Murthy, G. M. Whitesides, Proc. Natl. Acad. Sci. USA 2002, 99, 12542 – 12547.en_US
dc.identifier.citedreferenceB. Li, Y. X. Ma, S. Wang, P. M. Moran, Biomaterials 2005, 26, 1487 – 1495.en_US
dc.identifier.citedreferenceB. M. Lamb, D. G. Barrett, N. P. Westeott, M. N. Yousaf, Langmuir 2008, 24, 8885 – 8889.en_US
dc.identifier.citedreferenceA. Mahapatro, D. M. Johnson, D. N. Patel, M. D. Feldman, A. A. Ayon, C. M. Agrawal, Nanomed. Nanotechnol. Biol. Med. 2006, 2, 182 – 190.en_US
dc.identifier.citedreferenceJ. A. Jones, L. A. Qin, H. Meyerson, I. K. Kwon, T. Matsuda, J. M. Anderson, J. Biomed. Mater. Res. Part A 2008, 86A, 261 – 268.en_US
dc.identifier.citedreferenceH. Kondoh, C. Kodama, H. Sumida, H. Nozoye, J. Chem. Phys. 1999, 111, 1175 – 1184.en_US
dc.identifier.citedreferenceJ. Noh, M. Hara, Langmuir 2001, 17, 7280 – 7285.en_US
dc.identifier.citedreferenceM. Zelzer, M. R. Alexander, N. A. Russell, Acta Biomater. 2011, 7, 4120 – 4130.en_US
dc.identifier.citedreferenceM. R. Alexander, J. D. Whittle, D. Barton, R. D. Short,. Mater. Chem. 2004, 14, 408 – 412.en_US
dc.identifier.citedreferenceM. Notara, N. A. Bullett, P. Deshpande, D. B. Haddow, S. MacNeil, J. T. Daniels, J. Mater. Sci. Mater. Med. 2007, 18, 329 – 338.en_US
dc.identifier.citedreferenceD. B. Haddow, D. A. Steele, R. D. Short, R. A. Dawson, S. MacNeil, J. Biomed. Mater. Res. Part A 2003, 64A, 80 – 87.en_US
dc.identifier.citedreferenceM. T. van Os, Plasma polymers are formed from a glow discharge excited in an organic precursor gas/vapour allowed to flow at a controlled rate into a reaction chamber under reduced pressure. University of Twente, Netherlands, 2000.en_US
dc.identifier.citedreferenceF. J. Harding, L. R. Clements, R. D. Short, H. Thissen, N. H. Voelcker, Acta Biomater. 2012, 8, 1739 – 1748.en_US
dc.identifier.citedreferenceH. E. Colley, G. Mishra, A. M. Scutt, S. L. McArthur, Plasma Process. Polym. 2009, 6, 831 – 839.en_US
dc.identifier.citedreferenceV. Sciarratta, K. Sohn, A. Burger‐Kentischer, H. Brunner, C. Oehr, Plasma Process. Polym. 2006, 3, 532 – 539.en_US
dc.identifier.citedreferenceM. Zelzer, R. Majani, J. W. Bradley, F. Rose, M. C. Davies, M. R. Alexander, Biomaterials 2008, 29, 172 – 184.en_US
dc.identifier.citedreferenceY. W. Chun, D. Khang, K. M. Haberstroh, T. J. Webster, Nanotechnology 2009, 20, 085104.en_US
dc.identifier.citedreferenceA. Dolatshahi‐Pirouz, T. Jensen, D. C. Kraft, M. Foss, P. Kingshott, J. L. Hansen, A. N. ACS Nano 2010, 4, 2874 – 2882.en_US
dc.identifier.citedreferenceI. Wall, N. Donos, K. Carlqvist, F. Jones, P. Brett, Bone 2009, 45, 17 – 26.en_US
dc.identifier.citedreferenceM. Plecko, C. Sievert, D. Andermatt, R. Frigg, P. Kronen, K. Klein, S. Stubinger, K. Nuss, A. Burki, S. Ferguson, U. Stoeckle, B. von Rechenberg, BMC Musculoskelet. Disord. 2012, 13, 32.en_US
dc.identifier.citedreferenceK. Mustafa, A. Wennerberg, J. Wroblewski, K. Hultenby, B. S. Lopez, K. Arvidson, Clin. Oral Implants Res. 2001, 12, 515 – 525.en_US
dc.identifier.citedreferenceR. R. Bhat, J. Genzer, B. N. Chaney, H. W. Sugg, A. Liebmann‐Vinson, Nanotechnology 2003, 14, 1145 – 1152.en_US
dc.identifier.citedreferenceR. R. Bhat, D. A. Fischer, J. Genzer, Langmuir 2002, 18, 5640 – 5643.en_US
dc.identifier.citedreferenceR. Venkatasubramanian, K. J. Jin, N. S. Pesika, Langmuir 2011, 27, 3261 – 3265.en_US
dc.identifier.citedreferenceBlondiaux, N. Gradients of nanotopography in polymers Dissertation, ETH Zurich, 2006.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.