Surface engineering the cellular microenvironment via patterning and gradients
dc.contributor.author | Ross, Aftin M. | en_US |
dc.contributor.author | Lahann, Joerg | en_US |
dc.date.accessioned | 2013-05-02T19:35:13Z | |
dc.date.available | 2014-07-01T15:53:32Z | en_US |
dc.date.issued | 2013-05-15 | en_US |
dc.identifier.citation | Ross, Aftin M.; Lahann, Joerg (2013). "Surface engineering the cellular microenvironment via patterning and gradients." Journal of Polymer Science Part B: Polymer Physics 51(10): 775-794. <http://hdl.handle.net/2027.42/97492> | en_US |
dc.identifier.issn | 0887-6266 | en_US |
dc.identifier.issn | 1099-0488 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/97492 | |
dc.description.abstract | Cell organization, proliferation, and differentiation are impacted by diverse cues present in the cellular microenvironment. As a result, the surface of a material plays an important role in cellular function. Synthetic surfaces may be augmented by physical as well as chemical means. In particular, patterning and interfacial gradients may be utilized to mitigate the cellular response. Patterning is advantageous as it affords control over a range of feature sizes from several nanometers to millimeters. Gradients exist in vivo , for instance in stem cell niches, and the ability to create interfacial gradients in vitro can provide valuable insights into the influence of a series of minute surface changes on a single sample. This review focuses on fabrication methods for generating micro‐ and nanoscale surface patterns as well as interfacial gradients, the impact of these surface modifications on the cellular response, and the advantages and challenges of these surfaces in in vitro applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys., 2013 The influence of patterning and interfacial gradients on the cellular response has numerous applications in tissue engineering and basic cell science. Various methods for fabricating small‐scale patterns and interfacial gradients as well as their potential and limitations are described. Furthermore, the impact of patterns and gradients on cellular function for numerous cell types and the use of these techniques to address biological questions in in vitro environments are illustrated. Future perspectives are also provided. | en_US |
dc.publisher | Wiley Subscription Services, Inc., A Wiley Company | en_US |
dc.subject.other | Surfaces | en_US |
dc.subject.other | Biological Applications of Polymers | en_US |
dc.subject.other | Bioengineering | en_US |
dc.title | Surface engineering the cellular microenvironment via patterning and gradients | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Materials Science and Engineering | en_US |
dc.subject.hlbtoplevel | Engineering | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 | en_US |
dc.contributor.affiliationum | Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 | en_US |
dc.contributor.affiliationum | Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109 | en_US |
dc.contributor.affiliationum | Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109 | en_US |
dc.contributor.affiliationother | Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann‐von‐Helmholtz‐Platz 1, Eggenstein‐Leopoldshafen 76344, Germany | en_US |
dc.contributor.affiliationother | Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann‐von‐Helmholtz‐Platz 1, Eggenstein‐Leopoldshafen 76344, Germany | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/97492/1/23275_ftp.pdf | |
dc.identifier.doi | 10.1002/polb.23275 | en_US |
dc.identifier.source | Journal of Polymer Science Part B: Polymer Physics | en_US |
dc.identifier.citedreference | M. H. Schoenfisch, J. E. Pemberton, J. Am. Chem. Soc. 1998, 120, 4502 – 4513. | en_US |
dc.identifier.citedreference | J. C. Meredith, J. L. Sormana, B. G. Keselowsky, A. J. Garcia, A. Tona, A. Karim, E. J. J. Biomed. Mater. Res. Part A 2003, 66A, 483 – 490. | en_US |
dc.identifier.citedreference | X. Y. Lu, J. L. Zhang, C. C. Zhang, Y. C. Han, Macromol. Rapid Commun. 2005, 26, 637 – 642. | en_US |
dc.identifier.citedreference | T. P. Kunzler, C. Huwiler, T. Drobek, J. Voeroes, N. D. Spencer, Biomaterials 2007, 28, 5000 – 5006. | en_US |
dc.identifier.citedreference | N. R. Washburn, K. M. Yamada, C. G. Simon, S. B. Kennedy, E. J. Amis, Biomaterials 2004, 25, 1215 – 1224. | en_US |
dc.identifier.citedreference | A. Curtis, IEEE Trans. Nanobiosci. 2004, 3, 293 – 295. | en_US |
dc.identifier.citedreference | A. M. Ross, Z. X. Jiang, M. Bastmeyer, J. Lahann, Small 2012, 8, 336 – 355. | en_US |
dc.identifier.citedreference | C. Zink, H. Hall, D. M. Brunette, N. D. Spencer, Biomaterials 2012, 33, 8055 – 8061. | en_US |
dc.identifier.citedreference | Z. B. Liu, L. D. Xiao, B. J. Xu, Y. Zhang, A. F. T. Mak, Y. Li, W. Y. Man, M. Yang, Covalently immobilized biomolecule gradient on hydrogel surface using a gradient generating microfluidic device for a quantitative mesenchymal stem cell study. Biomicrofluidics 2012, 6, 24111 – 2411112. | en_US |
dc.identifier.citedreference | V. V. Abhyankar, M. A. Lokuta, A. Huttenlocher, D. J. Beebe, Lab Chip 2006, 6, 389 – 393. | en_US |
dc.identifier.citedreference | I. Barkefors, S. Thorslund, F. Nikolajeff, J. Kreuger, Lab Chip 2009, 9, 529 – 535. | en_US |
dc.identifier.citedreference | M. V. Turturro, G. Papavasiliou, J. Biomater. Sci. Polym. Ed. 2012, 23, 917 – 939. | en_US |
dc.identifier.citedreference | T. A. Kapur, M. S. Shoichet, J. Biomed. Mater. Res. Part A 2004, 68A, 235 – 243. | en_US |
dc.identifier.citedreference | D. Guarnieri, De A. Capua, M. Ventre, A. Borzacchiello, C. Pedone, D. Marasco, M. Ruvo, P. A. Netti, Acta Biomater. 2010, 6, 2532 – 2539. | en_US |
dc.identifier.citedreference | S. A. DeLong, J. J. Moon, J. L. West, Biomaterials 2005, 26, 3227 – 3234. | en_US |
dc.identifier.citedreference | J. K. He, Y. A. Du, J. L. Villa‐Uribe, C. M. Hwang, D. C. Li, A. Khademhosseini, Adv. Funct. Mater. 2010, 20, 131 – 137. | en_US |
dc.identifier.citedreference | D. E. Discher, P. Janmey, Y. L. Wang, Science 2005, 310, 1139 – 1143. | en_US |
dc.identifier.citedreference | L. A. Flanagan, Y. E. Ju, B. Marg, M. Osterfield, P. A. Janmey, Neuroreport 2002, 13, 2411 – 2415. | en_US |
dc.identifier.citedreference | Lee‐C. Thedieck, N. Rauch, R. Fiammengo, G. Klein, J. P. Spatz, J. Cell Sci. 2012, 125, 3765 – 3775. | en_US |
dc.identifier.citedreference | J. R. Tse, A. J. Engler, PLoS One 2011, 6, 9. | en_US |
dc.identifier.citedreference | T. Luhmann, P. Hanseler, B. Grant, H. Hall, Biomaterials 2009, 30, 4503 – 4512. | en_US |
dc.identifier.citedreference | M. C. Dodla, R. V. Bellamkonda, Biomaterials 2008, 29, 33 – 46. | en_US |
dc.identifier.citedreference | A. P. Wong, Perez‐R. Castillejos, J. C. Love, G. M. Whitesides, Biomaterials 2008, 29, 1853 – 1861. | en_US |
dc.identifier.citedreference | M. C. Dodla, R. V. Bellamkonda, J. Biomed. Mater. Res. Part A 2006, 78A, 213 – 221. | en_US |
dc.identifier.citedreference | X. Q. Wang, E. Wenk, X. H. Zhang, L. Meinel, Vunjak‐G. Novakovic, D. L. Kaplan, J. Controlled Release 2009, 134, 81 – 90. | en_US |
dc.identifier.citedreference | K. von der Mark, J. Park, S. Bauer, P. Schmuki, Cell Tissue Res 2010, 339, 131 – 153. | en_US |
dc.identifier.citedreference | H. Geckil, F. Xu, X. H. Zhang, S. Moon, U. Demirci, Nanomedicine 2010, 5, 469 – 484. | en_US |
dc.identifier.citedreference | D. Paripovic, H. Hall‐Bozic, H. A. Klok, J. Mater. Chem. 2012, 22, 19570 – 19578. | en_US |
dc.identifier.citedreference | E. Martinez, A. Lagunas, C. A. Mills, S. Rodriguez‐Segui, M. Estevez, S. Oberhansl, J. Comelles, J. Samitier, Nanomedicine 2009, 4, 65 – 82. | en_US |
dc.identifier.citedreference | T. Blattler, C. Huwiler, M. Ochsner, B. Stadler, H. Solak, J. Voros, H. M. Grandin, J. Nanosci. Nanotechnol. 2006, 6, 2237 – 2264. | en_US |
dc.identifier.citedreference | M. Arnold, V. C. Hirschfeld‐Warneken, T. Lohmueller, P. Heil, J. Bluemmel, E. A. Cavalcanti‐Adam, M. Lopez‐Garcia, P. Walther, H. Kessler, B. Geiger, J. P. Spatz, Nano Lett. 2008, 8, 2063 – 2069. | en_US |
dc.identifier.citedreference | C. J. Bettinger, R. Langer, J. T. Borenstein, Angew. Chem. Int. Ed. Engl. 2009, 48, 5406 – 5415. | en_US |
dc.identifier.citedreference | J. D. Wu, Z. W. Mao, H. P. Tan, L. L. Han, T. C. Ren, C. Y. Gao, Interface Focus 2012, 2, 337 – 355. | en_US |
dc.identifier.citedreference | K. M. Scully, M. G. Rosenfeld, Science 2002, 295, 2231 – 2235. | en_US |
dc.identifier.citedreference | D. Julthongpiput, M. J. Fasolka, W. H. Zhang, T. Nguyen, E. J. Amis, Nano Lett. 2005, 5, 1535 – 1540. | en_US |
dc.identifier.citedreference | R. A. Potyrailo, L. Hassib, Rev. Sci. Instrum. 2005, 76, 062225. | en_US |
dc.identifier.citedreference | S. Y. Chen, L. M. Smith, Langmuir 2009, 25, 12275 – 12282. | en_US |
dc.identifier.citedreference | O. Akbulut, A. A. Yu, F. Stellacci, Chem. Soc. Rev. 2010, 39, 30 – 37. | en_US |
dc.identifier.citedreference | T. F. Didar, A. M. Foudeh, M. Tabrizian, Anal. Chem. 2012, 84, 1012 – 1018. | en_US |
dc.identifier.citedreference | L. J. Millet, M. E. Stewart, R. G. Nuzzo, M. U. Gillette, Lab Chip 2010, 10, 1525 – 1535. | en_US |
dc.identifier.citedreference | D. Wright, B. Rajalingam, J. M. Karp, S. Selvarasah, Y. B. Ling, J. Yeh, R. Langer, M. R. Dokmeci, A. Khademhosseini, J. Biomed. Mater. Res. Part A 2008, 85A, 530 – 538. | en_US |
dc.identifier.citedreference | R. Fishler, A. Artzy‐Schnirman, E. Peer, R. Wolchinsky, R. Brener, T. Waks, Z. Eshhar, Y. Reiter, U. Sivan, Nano Lett. 2012, 12, 4992 – 4996. | en_US |
dc.identifier.citedreference | H. Y. Chen, M. Hirtz, X. P. Deng, T. Laue, H. Fuchs, J. Lahann, J. Am. Chem. Soc. 2010, 132, 18023 – 18025. | en_US |
dc.identifier.citedreference | J. D. Hoff, L. J. Cheng, E. Meyhofer, L. J. Guo, A. J. Hunt, Nano Lett. 2004, 4, 853 – 857. | en_US |
dc.identifier.citedreference | X. Z. Ye, L. M. Qi, Nano Today 2011, 6, 608 – 631. | en_US |
dc.identifier.citedreference | W. Dai, Y. Z. Zheng, K. Q. Luo, H. K. Wu, Biomicrofluidics 2010, 4, 024101. | en_US |
dc.identifier.citedreference | X. R. Li, M. R. MacEwan, J. W. Xie, D. Siewe, X. Y. Yuan, Y. N. Xia, Adv. Funct. Mater. 2010, 20, 1632 – 1637. | en_US |
dc.identifier.citedreference | E. D. Miller, J. A. Phillippi, G. W. Fisher, P. G. Campbell, L. M. Walker, L. E. Weiss, Comb. Chem. High Throughput Screen. 2009, 12, 604 – 618. | en_US |
dc.identifier.citedreference | X. L. Guo, C. G. Elliott, Z. Q. Li, Y. Y. Xu, D. W. Hamilton, J. J. Guan, Biomacromolecules 2012, 13, 3262 – 3271. | en_US |
dc.identifier.citedreference | M. Kim, T. Kim, Anal. Chem. 2010, 82, 9401 – 9409. | en_US |
dc.identifier.citedreference | P. Y. Wang, W. B. Tsai, N. H. Voelcker, Acta Biomater. 2012, 8, 519 – 530. | en_US |
dc.identifier.citedreference | A. Ranella, M. Barberoglou, S. Bakogianni, C. Fotakis, E. Stratakis, Acta Biomater. 2010, 6, 2711 – 2720. | en_US |
dc.identifier.citedreference | B. Joddar, Y. Ito, J. Mater. Chem. 2011, 21, 13737 – 13755. | en_US |
dc.identifier.citedreference | L. Xu, L. Robert, O. Qi, F. Taddei, Y. Chen, A. B. Lindner, D. Baigl, Nano Lett. 2007, 7, 2068 – 2072. | en_US |
dc.identifier.citedreference | X. K. Lin, Q. He, J. B. Li, Chem. Soc. Rev. 2012, 41, 3584 – 3593. | en_US |
dc.identifier.citedreference | S. Gilles, C. Kaulen, M. Pabst, U. Simon, A. Offenhausser, D. Mayer, Nanotechnology 2011, 22, 295301. | en_US |
dc.identifier.citedreference | A. P. Quist, S. Oscarsson, Exp. Opin. Drug Discov. 2010, 5, 569 – 581. | en_US |
dc.identifier.citedreference | D. Falconnet, G. Csucs, H. M. Grandin, M. Textor, Biomaterials 2006, 27, 3044 – 3063. | en_US |
dc.identifier.citedreference | A. Khademhosseini, R. Langer, J. Borenstein, J. P. Vacanti, Proc. Natl. Acad. Sci. USA 2006, 103, 2480 – 2487. | en_US |
dc.identifier.citedreference | N. Patel, R. Padera, G. H. W. Sanders, S. M. Cannizzaro, M. C. Davies, R. Langer, C. J. Roberts, S. J. B. Tendler, P. M. Williams, K. M. Shakesheff, FASEB J. 1998, 12, 1447 – 1454. | en_US |
dc.identifier.citedreference | S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber, G. M. Whitesides, Nature 2001, 411, 1016 – 1016. | en_US |
dc.identifier.citedreference | C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, D. E. Ingber, Science 1997, 276, 1425 – 1428. | en_US |
dc.identifier.citedreference | C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin‐Ferlazzo, L. Couraud, H. Launois, Appl. Surf. Sci. 2000, 164, 111 – 117. | en_US |
dc.identifier.citedreference | Y. N. Xia, G. M. Whitesides, Annu. Rev. Mater. Sci. 1998, 28, 153 – 184. | en_US |
dc.identifier.citedreference | A. Perl, D. N. Reinhoudt, J. Adv. Mater. 2009, 21, 2257 – 2268. | en_US |
dc.identifier.citedreference | C. C. Wu, D. N. Reinhoudt, C. Otto, V. Subramaniam, A. H. Velders, Small 2011, 7, 989 – 1002. | en_US |
dc.identifier.citedreference | R. C. Schmidt, K. E. Healy, J. Biomed. Mater. Res. Part A 2009, 90A, 1252 – 1261. | en_US |
dc.identifier.citedreference | A. L. Hook, N. H. Voelcker, H. Acta Biomater. 2009, 5, 2350 – 2370. | en_US |
dc.identifier.citedreference | C. M. Kolodziej, H. D. Maynard, Chem. Mater. 2012, 24, 774 – 780. | en_US |
dc.identifier.citedreference | P. M. Mendes, C. L. Yeung, J. A. Preece, Nanoscale Res. Lett. 2007, 2, 373 – 384. | en_US |
dc.identifier.citedreference | C. S. Whelan, M. J. Lercel, H. G. Craighead, K. Seshadri, D. L. Allara, Appl. Phys. Lett. 1996, 69, 4245 – 4247. | en_US |
dc.identifier.citedreference | H. Hatakeyama, A. Kikuchi, M. Yamato, T. Okano, Biomaterials 2007, 28, 3632 – 3643. | en_US |
dc.identifier.citedreference | F. Kantawong, K. E. V. Burgess, K. Jayawardena, A. Hart, R. J. Burchmore, N. Gadegaard, R. O. C. Oreffo, M. J. Dalby, Biomaterials 2009, 30, 4723 – 4731. | en_US |
dc.identifier.citedreference | G. Dos Reis, F. Fenili, A. Gianfelice, G. Bongiorno, D. Marchesi, P. E. Scopelliti, A. Borgonovo, A. Podesta, M. Indrieri, E. Ranucci, P. Ferruti, C. Lenardi, P. Milani, Macromol. Biosci. 2010, 10, 842 – 852. | en_US |
dc.identifier.citedreference | D. O. Rodgerson, A. G. Harris, Stem Cell Rev. Rep. 2011, 7, 782 – 796. | en_US |
dc.identifier.citedreference | H. Takahashi, M. Nakayama, K. Itoga, M. Yamato, T. Okano, Biomacromolecules 2011, 12, 1414 – 1418. | en_US |
dc.identifier.citedreference | V. S. Goudar, S. Suran, M. M. Varma, Micro Nano Lett. 2012, 7, 549 – 553. | en_US |
dc.identifier.citedreference | P. Bhatnagar, G. G. Malliaras, I. Kim, C. A. Batt, Adv. Mater. 2010, 22, 1242. | en_US |
dc.identifier.citedreference | M. J. Brady, A. Davidson, Rev. Sci. Instrum. 1983, 54, 1292 – 1295. | en_US |
dc.identifier.citedreference | R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, G. M. Whitesides, Biomaterials 1999, 20, 2363 – 2376. | en_US |
dc.identifier.citedreference | R. Michel, J. W. Lussi, G. Csucs, I. Reviakine, G. Danuser, B. Ketterer, J. A. Hubbell, M. Textor, N. D. Spencer, Langmuir 2002, 18, 3281 – 3287. | en_US |
dc.identifier.citedreference | D. Falconnet, A. Koenig, T. Assi, M. Textor, Adv. Funct. Mater. 2004, 14, 749 – 756. | en_US |
dc.identifier.citedreference | K. Jang, Y. Xu, K. Sato, Y. Tanaka, K. Mawatari, T. Kitamori, Microchim. Acta 2012, 179, 49 – 55. | en_US |
dc.identifier.citedreference | M. S. Hahn, L. J. Taite, J. J. Moon, M. C. Rowland, K. A. Ruffino, J. L. West, Biomaterials 2006, 27, 2519 – 2524. | en_US |
dc.identifier.citedreference | C. A. Scotchford, M. Ball, M. Winkelmann, J. Voros, C. Csucs, D. M. Brunette, G. Danuser, M. Textor, Biomaterials 2003, 24, 1147 – 1158. | en_US |
dc.identifier.citedreference | M. Kim, J. C. Choi, H. R. Jung, J. S. Katz, M. G. Kim, J. Doh, Langmuir 2010, 26, 12112 – 12118. | en_US |
dc.identifier.citedreference | J. Turkova, J. Chromatogr. B 1999, 722, 11 – 31. | en_US |
dc.identifier.citedreference | G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang, D. E. Ingber, Annu. Rev. Biomed. Eng. 2001, 3, 335 – 373. | en_US |
dc.identifier.citedreference | W. Y. Xia, W. Liu, L. Cui, Y. C. Liu, W. Zhong, D. L. Liu, J. J. Wu, K. H. Chua, Y. L. Cao, J. Biomed. Mater. Res. Part B: Appl. Biomater. 2004, 71B, 373 – 380. | en_US |
dc.identifier.citedreference | Y. N. Xia, G. M. Whitesides, Angew. Chem. Int. Ed. Engl. 1998, 37, 551 – 575. | en_US |
dc.identifier.citedreference | G. Csucs, T. Kunzler, K. Feldman, F. Robin, N. D. Spencer, Langmuir 2003, 19, 6104 – 6109. | en_US |
dc.identifier.citedreference | D. Lehnert, B. Wehrle‐Haller, C. David, U. Weiland, C. Ballestrem, B. A. Imhof, M. Bastmeyer, J. Cell Sci. 2004, 117, 41 – 52. | en_US |
dc.identifier.citedreference | H. Schmid, B. Michel, Macromolecules 2000, 33, 3042 – 3049. | en_US |
dc.identifier.citedreference | M. Mayer, J. Yang, I. Gitlin, D. H. Gracias, G. M. Whitesides, Proteomics 2004, 4, 2366 – 2376. | en_US |
dc.identifier.citedreference | V. A. Schulte, Y. B. Hu, M. Diez, D. Bunger, M. Moller, M. C. Lensen, Biomaterials 2010, 31, 8583 – 8595. | en_US |
dc.identifier.citedreference | T. T. Truong, R. S. Lin, S. Jeon, H. H. Lee, J. Maria, A. Gaur, F. Hua, I. Meinel, J. A. Rogers, Langmuir 2007, 23, 2898 – 2905. | en_US |
dc.identifier.citedreference | X. X. Li, S. Hou, X. Z. Feng, Y. Yu, J. J. Ma, L. Y. Li, Colloids Surf. B:Biointerfaces 2009, 74, 370 – 374. | en_US |
dc.identifier.citedreference | Y. D. Teng, E. B. Lavik, X. L. Qu, K. I. Park, J. Ourednik, D. Zurakowski, R. Langer, E. Y. Snyder, Proc. Natl. Acad. Sci. USA 2002, 99, 9606 – 9606. | en_US |
dc.identifier.citedreference | R. Lovchik, C. von Arx, A. Viviani, E. Delamarche, Anal. Bioanal. Chem. 2008, 390, 801 – 808. | en_US |
dc.identifier.citedreference | M. Mrksich, G. M. Whitesides, Annu. Rev. Biophys. Biomol. Struct. 1996, 25, 55 – 78. | en_US |
dc.identifier.citedreference | T. A. Petrie, B. T. Stanley, A. J. Garcia, J. Biomed. Mater. Res. Part A 2009, 90A, 755 – 765. | en_US |
dc.identifier.citedreference | N. T. Flynn, T. N. T. Tran, M. J. Cima, R. Langer, Langmuir 2003, 19, 10909 – 10915. | en_US |
dc.identifier.citedreference | D. L. Wilson, R. Martin, S. Hong, M. Cronin‐Golomb, C. A. Mirkin, D. L. Kaplan, Proc. Natl. Acad. Sci. USA 2001, 98, 13660 – 13664. | en_US |
dc.identifier.citedreference | G. Agarwal, L. A. Sowards, R. R. Naik, M. O. Stone, J. Am. Chem. Soc. 2003, 125, 580 – 583. | en_US |
dc.identifier.citedreference | D. S. Ginger, H. Zhang, C. A. Mirkin, Angew. Chem. Int. Ed. Engl. 2004, 43, 30 – 45. | en_US |
dc.identifier.citedreference | C. L. Cheung, J. A. Camarero, B. W. Woods, T. W. Lin, J. E. Johnson, De J. J. Yoreo, J. Am. Chem. Soc. 2003, 125, 6848 – 6849. | en_US |
dc.identifier.citedreference | J. H. Lim, D. S. Ginger, K. B. Lee, J. Heo, J. M. Nam, C. A. Mirkin, Angew. Chem. Int. Ed. Engl. 2003, 42, 2309 – 2312. | en_US |
dc.identifier.citedreference | L. M. Demers, D. S. Ginger, S. J. Park, Z. Li, S. W. Chung, C. A. Mirkin, Science 2002, 296, 1836 – 1838. | en_US |
dc.identifier.citedreference | S. Sekula, J. Fuchs, S. Weg‐Remers, P. Nagel, S. Schuppler, J. Fragala, N. Theilacker, M. Franueb, C. Wingren, P. Ellmark, C. A. K. Borrebaeck, C. A. Mirkin, H. Fuchs, S. Lenhert, Small 2008, 4, 1785 – 1793. | en_US |
dc.identifier.citedreference | J. M. Curran, R. Stokes, E. Irvine, D. Graham, N. A. Amro, R. G. Sanedrin, H. Jamil, J. A. Hunt, Lab Chip 2010, 10, 1662 – 1670. | en_US |
dc.identifier.citedreference | S. M. Yang, S. G. Jang, D. G. Choi, S. Kim, H. K. Yu, Small 2006, 2, 458 – 475. | en_US |
dc.identifier.citedreference | M. A. Wood, J. R. Soc. Interface 2007, 4, 1 – 17. | en_US |
dc.identifier.citedreference | J. R. Jeong, S. Kim, S. H. Kim, J. A. C. Bland, S. C. Shin, S. M. Yang, Small 2007, 3, 1529 – 1533. | en_US |
dc.identifier.citedreference | J. Malmstrom, B. Christensen, H. P. Jakobsen, J. Lovmand, R. Foldbjerg, E. S. Sárensen, D. S. Sutherland, Nano Lett. 2010, 10, 686 – 694. | en_US |
dc.identifier.citedreference | N. Walter, C. Selhuber, H. Kessler, J. P. Spatz, Nano Lett. 2006, 6, 398 – 402. | en_US |
dc.identifier.citedreference | M. J. Dalby, R. O. C. Oreffo, In Stem Cell Engineering: Principles and Applications; Springer: New York, 2011; pp 247 – 258. | en_US |
dc.identifier.citedreference | H. Andersson, A. van den Berg, Lab Chip 2004, 4, 98 – 103. | en_US |
dc.identifier.citedreference | T. H. Park, M. L. Shuler, Biotechnol. Prog. 2003, 19, 243 – 253. | en_US |
dc.identifier.citedreference | S. H. Lee, A. J. Heinz, S. Shin, Y. G. Jung, S. E. Choi, W. Park, J. H. Roe, S. Kwon, Anal. Chem. 2010, 82, 2900 – 2906. | en_US |
dc.identifier.citedreference | G. A. Hudalla, W. L. Murphy, Soft Matter 2011, 7, 9561 – 9571. | en_US |
dc.identifier.citedreference | J. T. Koepsel, W. L. Murphy, Langmuir 2009, 25, 12825 – 12834. | en_US |
dc.identifier.citedreference | A. G. Mikos, S. W. Herring, P. Ochareon, J. Elisseeff, H. H. Lu, R. Kandel, F. J. Schoen, M. Toner, D. Mooney, A. Atala, M. E. Van Dyke, D. Kaplan, G. Vunjak‐Novakovic, Tissue Eng. 2006, 12, 3307 – 3339. | en_US |
dc.identifier.citedreference | C. A. Toro, L. A. Arias, S. Brauchi, Curr. Pharm. Biotechnol. 2011, 12, 12 – 23. | en_US |
dc.identifier.citedreference | T. M. Keenan, A. Folch, Lab Chip 2008, 8, 34 – 57. | en_US |
dc.identifier.citedreference | K. Rajan, In Annual Review of Materials Research; Annual Reviews, 2008; Vol. 38, pp 299 – 322. | en_US |
dc.identifier.citedreference | J. Genzer, R. R. Bhat, Langmuir 2008, 24, 2294 – 2317. | en_US |
dc.identifier.citedreference | D. Geblinger, C. Zink, N. D. Spencer, L. Addadi, B. Geiger, J. R. Soc. Interface 2012, 9, 1599 – 1608. | en_US |
dc.identifier.citedreference | J. L. Zhang, L. J. Xue, Y. C. Han, Langmuir 2005, 21, 5667 – 5671. | en_US |
dc.identifier.citedreference | S. L. Zhang, B. You, G. X. Gu, L. M. Wu, Polymer 2009, 50, 6235 – 6244. | en_US |
dc.identifier.citedreference | A. Lagunas, J. Comelles, E. Martinez, J. Samitier, Langmuir 2010, 26, 14154 – 14161. | en_US |
dc.identifier.citedreference | J. Genzer, In Annual Review of Materials Research; Annual Reviews, 2012; Vol. 42, pp 435 – 468. | en_US |
dc.identifier.citedreference | B. P. Harris, J. K. Kutty, E. W. Fritz, C. K. Webb, K. J. L. Burg, A. T. Metters, Langmuir 2006, 22, 4467 – 4471. | en_US |
dc.identifier.citedreference | N. M. Moore, N. J. Lin, N. D. Gallant, M. L. Becker, Biomaterials 2010, 31, 1604 – 1611. | en_US |
dc.identifier.citedreference | Y. Elkasabi, J. Lahann, Macromol. Rapid Commun. 2009, 30, 57 – 63. | en_US |
dc.identifier.citedreference | Y. M. Elkasabi, J. Lahann, P. H. Krebsbach, Biomaterials 2011, 32, 1809 – 1815. | en_US |
dc.identifier.citedreference | H. Yamazoe, T. Tanabe, J. Biomed. Mater. Res. Part A 2009, 91A, 1202 – 1209. | en_US |
dc.identifier.citedreference | N. L. Jeon, H. Baskaran, S. K. W. Dertinger, G. M. Whitesides, L. Van de Water, M. Toner, Nat. Biotechnol. 2002, 20, 826 – 830. | en_US |
dc.identifier.citedreference | L. J. Millet, M. E. Stewart, R. G. Nuzzo, M. U. Gillette, Lab Chip 10, 1525 – 1535. | en_US |
dc.identifier.citedreference | J. B. Gurdon, P. Y. Bourillot, Nature 2001, 413, 797 – 803. | en_US |
dc.identifier.citedreference | S. K. W. Dertinger, X. Y. Jiang, Z. Y. Li, V. N. Murthy, G. M. Whitesides, Proc. Natl. Acad. Sci. USA 2002, 99, 12542 – 12547. | en_US |
dc.identifier.citedreference | B. Li, Y. X. Ma, S. Wang, P. M. Moran, Biomaterials 2005, 26, 1487 – 1495. | en_US |
dc.identifier.citedreference | B. M. Lamb, D. G. Barrett, N. P. Westeott, M. N. Yousaf, Langmuir 2008, 24, 8885 – 8889. | en_US |
dc.identifier.citedreference | A. Mahapatro, D. M. Johnson, D. N. Patel, M. D. Feldman, A. A. Ayon, C. M. Agrawal, Nanomed. Nanotechnol. Biol. Med. 2006, 2, 182 – 190. | en_US |
dc.identifier.citedreference | J. A. Jones, L. A. Qin, H. Meyerson, I. K. Kwon, T. Matsuda, J. M. Anderson, J. Biomed. Mater. Res. Part A 2008, 86A, 261 – 268. | en_US |
dc.identifier.citedreference | H. Kondoh, C. Kodama, H. Sumida, H. Nozoye, J. Chem. Phys. 1999, 111, 1175 – 1184. | en_US |
dc.identifier.citedreference | J. Noh, M. Hara, Langmuir 2001, 17, 7280 – 7285. | en_US |
dc.identifier.citedreference | M. Zelzer, M. R. Alexander, N. A. Russell, Acta Biomater. 2011, 7, 4120 – 4130. | en_US |
dc.identifier.citedreference | M. R. Alexander, J. D. Whittle, D. Barton, R. D. Short,. Mater. Chem. 2004, 14, 408 – 412. | en_US |
dc.identifier.citedreference | M. Notara, N. A. Bullett, P. Deshpande, D. B. Haddow, S. MacNeil, J. T. Daniels, J. Mater. Sci. Mater. Med. 2007, 18, 329 – 338. | en_US |
dc.identifier.citedreference | D. B. Haddow, D. A. Steele, R. D. Short, R. A. Dawson, S. MacNeil, J. Biomed. Mater. Res. Part A 2003, 64A, 80 – 87. | en_US |
dc.identifier.citedreference | M. T. van Os, Plasma polymers are formed from a glow discharge excited in an organic precursor gas/vapour allowed to flow at a controlled rate into a reaction chamber under reduced pressure. University of Twente, Netherlands, 2000. | en_US |
dc.identifier.citedreference | F. J. Harding, L. R. Clements, R. D. Short, H. Thissen, N. H. Voelcker, Acta Biomater. 2012, 8, 1739 – 1748. | en_US |
dc.identifier.citedreference | H. E. Colley, G. Mishra, A. M. Scutt, S. L. McArthur, Plasma Process. Polym. 2009, 6, 831 – 839. | en_US |
dc.identifier.citedreference | V. Sciarratta, K. Sohn, A. Burger‐Kentischer, H. Brunner, C. Oehr, Plasma Process. Polym. 2006, 3, 532 – 539. | en_US |
dc.identifier.citedreference | M. Zelzer, R. Majani, J. W. Bradley, F. Rose, M. C. Davies, M. R. Alexander, Biomaterials 2008, 29, 172 – 184. | en_US |
dc.identifier.citedreference | Y. W. Chun, D. Khang, K. M. Haberstroh, T. J. Webster, Nanotechnology 2009, 20, 085104. | en_US |
dc.identifier.citedreference | A. Dolatshahi‐Pirouz, T. Jensen, D. C. Kraft, M. Foss, P. Kingshott, J. L. Hansen, A. N. ACS Nano 2010, 4, 2874 – 2882. | en_US |
dc.identifier.citedreference | I. Wall, N. Donos, K. Carlqvist, F. Jones, P. Brett, Bone 2009, 45, 17 – 26. | en_US |
dc.identifier.citedreference | M. Plecko, C. Sievert, D. Andermatt, R. Frigg, P. Kronen, K. Klein, S. Stubinger, K. Nuss, A. Burki, S. Ferguson, U. Stoeckle, B. von Rechenberg, BMC Musculoskelet. Disord. 2012, 13, 32. | en_US |
dc.identifier.citedreference | K. Mustafa, A. Wennerberg, J. Wroblewski, K. Hultenby, B. S. Lopez, K. Arvidson, Clin. Oral Implants Res. 2001, 12, 515 – 525. | en_US |
dc.identifier.citedreference | R. R. Bhat, J. Genzer, B. N. Chaney, H. W. Sugg, A. Liebmann‐Vinson, Nanotechnology 2003, 14, 1145 – 1152. | en_US |
dc.identifier.citedreference | R. R. Bhat, D. A. Fischer, J. Genzer, Langmuir 2002, 18, 5640 – 5643. | en_US |
dc.identifier.citedreference | R. Venkatasubramanian, K. J. Jin, N. S. Pesika, Langmuir 2011, 27, 3261 – 3265. | en_US |
dc.identifier.citedreference | Blondiaux, N. Gradients of nanotopography in polymers Dissertation, ETH Zurich, 2006. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.