Show simple item record

Role of the ribosome‐associated protein PY in the cold‐shock response of E scherichia coli

dc.contributor.authorDi Pietro, Fabioen_US
dc.contributor.authorBrandi, Annaen_US
dc.contributor.authorDzeladini, Nadireen_US
dc.contributor.authorFabbretti, Attilioen_US
dc.contributor.authorCarzaniga, Thomasen_US
dc.contributor.authorPiersimoni, Lolitaen_US
dc.contributor.authorPon, Cynthia L.en_US
dc.contributor.authorGiuliodori, Anna Mariaen_US
dc.date.accessioned2013-05-02T19:35:14Z
dc.date.available2014-05-23T15:04:20Zen_US
dc.date.issued2013-04en_US
dc.identifier.citationDi Pietro, Fabio; Brandi, Anna; Dzeladini, Nadire; Fabbretti, Attilio; Carzaniga, Thomas; Piersimoni, Lolita; Pon, Cynthia L.; Giuliodori, Anna Maria (2013). "Role of the ribosome‐associated protein PY in the cold‐shock response of E scherichia coli ." MicrobiologyOpen 2(2): 293-307. <http://hdl.handle.net/2027.42/97494>en_US
dc.identifier.issn2045-8827en_US
dc.identifier.issn2045-8827en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97494
dc.description.abstractProtein Y ( PY ) is an E scherichia coli cold‐shock protein which has been proposed to be responsible for the repression of bulk protein synthesis during cold adaptation. Here, we present in vivo and in vitro data which clarify the role of PY and its mechanism of action. Deletion of yfiA , the gene encoding protein PY , demonstrates that this protein is dispensable for cold adaptation and is not responsible for the shutdown of bulk protein synthesis at the onset of the stress, although it is able to partially inhibit translation. In vitro assays reveal that the extent of PY inhibition changes with different mRNA s and that this inhibition is related to the capacity of PY of binding 30S subunits with a fairly strong association constant, thus stimulating the formation of 70S monomers. Furthermore, our data provide evidence that PY competes with the other ribosomal ligands for the binding to the 30S subunits. Overall these results suggest an alternative model to explain PY function during cold shock and to reconcile the inhibition caused by PY with the active translation observed for some mRNA s during cold shock. E scherichia coli responds to cold stress by entering an acclimation phase during which protein synthesis slows down considerably with the exception of a specific set of genes (cold‐shock genes) whose expression is stimulated. In this article, we have investigated in vivo and in vitro the role of PY , a protein that is associated with the ribosome throughout the cold acclimation phase. Our data indicate that protein PY can affect translation initiation but is not responsible for turning off bulk protein synthesis during the cold stress.en_US
dc.publisherSpringer‐Verlag Wienen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCold Shocken_US
dc.subject.otherTranslation Initiationen_US
dc.subject.otherTranslation Regulationen_US
dc.subject.otherProtein PYen_US
dc.titleRole of the ribosome‐associated protein PY in the cold‐shock response of E scherichia colien_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23420694en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97494/1/mbo368-sup-0001-FigureS1-S3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97494/2/mbo368.pdf
dc.identifier.doi10.1002/mbo3.68en_US
dc.identifier.sourceMicrobiologyOpenen_US
dc.identifier.citedreferenceRodnina, M. V., Y. P. Semenkov, and W. Wintermeyer. 1994. Purification of fMet‐tRNA (fMet) by fast protein liquid chromatography. Anal. Biochem. 219: 380 – 381.en_US
dc.identifier.citedreferenceJones, P. G., and M. Inouye. 1996. RbfA, a 30S ribosomal binding factor, is a cold‐shock protein whose absence triggers the cold‐shock response. Mol. Microbiol. 6: 1207 – 1218.en_US
dc.identifier.citedreferenceKapust, R. B., J. Tözsér, T. D. Copeland, and D. S. Waugh. 2002. The P1' specificity of tobacco etch virus protease. Biochem. Biophys. Res. Commun. 5: 949 – 955.en_US
dc.identifier.citedreferenceLa Teana, A., A. Brandi, M. Falconi, R. Spurio, C. L. Pon, and C. O. Gualerzi. 1991. Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H‐NS. Proc. Natl. Acad. Sci. USA 88: 10907 – 10911.en_US
dc.identifier.citedreferenceMadjar, J. J., S. Michel, A. J. Cozzone, and J. P. Reboud. 1979. A method to identify individual proteins in four different two‐dimensional gel electrophoresis system: application to Escherichia coli ribosomal proteins. Anal. Biochem. 92: 174 – 182.en_US
dc.identifier.citedreferenceMaki, J., H. Yoshida, and A. Wada. 2000. Two proteins, YfiA and YhbH, associated with resting ribosomes in stationary phase Escherichia coli. Genes Cells 5: 965 – 974.en_US
dc.identifier.citedreferenceMarzi, S., A. G. Myasnikov, A. Serganov, C. Ehresmann, P. Romby, M. Yusupov, et al. 2007. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 6: 1019 – 1031.en_US
dc.identifier.citedreferenceMets, L. J., and L. Bogorad. 1974. Two‐dimensional polyacrylamide gel electrophoresis: an improved method for ribosomal proteins. Anal. Biochem. 57: 200 – 210.en_US
dc.identifier.citedreferenceMilon, P., A. L. Konevega, F. Peske, A. Fabbretti, C. O. Gualerzi, and M. V. Rodnina. 2007. Transient kinetics, fluorescence, and FRET in studies of initiation of translation in bacteria. Methods Enzymol. 430: 1 – 30.en_US
dc.identifier.citedreferencePhadtare, S. 2004. Recent developments in bacterial cold‐shock response. Curr. Issues Mol. Biol. 6: 125 – 136.en_US
dc.identifier.citedreferencePolikanov, Y. S., G. M. Blaha, and T. A. Steitz. 2012. How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science 336: 915 – 918.en_US
dc.identifier.citedreferencePowers, T., and H. F. Noller. 1990. Dominant lethal mutations in conserved loop in 16S rRNA. Proc. Natl. Acad. Sci. USA 87: 1042 – 1046.en_US
dc.identifier.citedreferenceRon, E. Z., R. E. Kohler, and D. B. Davis. 1966. Polysomes extracted from Escherichia coli by freeze‐thaw‐lysozyme lysis. Science 153: 1119 – 1120.en_US
dc.identifier.citedreferenceSambrook, J., and D. W. Russell. 2001. Molecular cloning. A laboratory manual. CSHL Press, Cold Spring Harbor, New York.en_US
dc.identifier.citedreferenceSerganov, A., A. Rak, M. Garber, J. Reinbolt, B. Ehresmann, C. Ehresmann, et al. 1997. Ribosomal protein S15 from Thermus thermophilus – cloning, sequencing, overexpression of the gene and RNA‐binding properties of the protein. Eur. J. Biochem. 246: 291 – 300.en_US
dc.identifier.citedreferenceSharma, M. R., A. Dönhöfer, C. Barat, V. Marquez, P. P. Datta, P. Fucini, et al. 2010. PSRP1 is not a ribosomal protein, but a ribosome‐binding factor that is recycled by the ribosome‐recycling factor (RRF) and elongation factor G (EF‐G). J. Biol. Chem. 6: 4006 – 4014.en_US
dc.identifier.citedreferencede Smit, M. H., and J. van Duin. 2003. Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. J. Mol. Biol. 331: 737 – 743.en_US
dc.identifier.citedreferenceSpurio, R., M. Falconi, A. Brandi, C. L. Pon, and C. O. Gualerzi. 1997. The oligomeric structure of nucleoid protein H‐NS is necessary for recognition of intrinsically curved DNA and for DNA bending. EMBO J. 18: 1795 – 1805.en_US
dc.identifier.citedreferenceSubramanian, A. R. 1974. Sensitive separation procedure for Escherichia coli ribosomal proteins and the resolution of high‐molecular–weight components. Eur. J. Biochem. 45: 541 – 546.en_US
dc.identifier.citedreferenceUchida, T., M. Abe, K. Matsuo, and M. Yoneda. 1970. Amounts of free 70S ribosomes and ribosomal subunits found in Escherichia coli at various temperatures. Biochem. Biophys. Res. Commun. 4: 1048 – 1054.en_US
dc.identifier.citedreferenceUeta, M., H. Yoshida, C. Wada, T. Baba, H. Mori, and A. Wada. 2005. Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase of Escherichia coli. Genes Cells 10: 1103 – 1112.en_US
dc.identifier.citedreferenceVila‐Sanjurjo, A., B. S. Schuwirth, C. W. Hau, and J. H. Cate. 2004. Structural basis for the control of translation initiation during stress. Nat. Struct. Mol. Biol. 11: 1054 – 1059.en_US
dc.identifier.citedreferenceWilson, D. N., and K. H. Nierhaus. 2004. The how and Y of cold shock. Nat. Struct. Mol. Biol. 11: 1026 – 1027.en_US
dc.identifier.citedreferenceXia, B., H. Ke, and M. Inouye. 2001. Acquirement of cold sensitivity by quadruple deletion of the CspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol. Microbiol. 40: 179 – 188.en_US
dc.identifier.citedreferenceYamanaka, K., and M. Inouye. 1997. Growth‐phase‐dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. J. Bacteriol. 179: 5126 – 5130.en_US
dc.identifier.citedreferenceYamanaka, K., L. Fang, and M. Inouye. 1998. The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol. Microbiol. 27: 247 – 255.en_US
dc.identifier.citedreferenceAgafonov, D. E., V. A. Kolb, I. V. Nazimov, and A. S. Spirin. 1999. A protein residing at the subunit interface of bacterial ribosome. Proc. Natl. Acad. Sci. USA 96: 12345 – 12349.en_US
dc.identifier.citedreferenceAgafonov, D. E., V. A. Kolb, and A. S. Spirin. 2001. Ribosome associated protein that inhibits translation at the aminoacyl‐tRNA binding stage. EMBO Rep. 2: 399 – 402.en_US
dc.identifier.citedreferenceBrandi, A., P. Pietroni, C. O. Gualerzi, and C. L. Pon. 1996. Post‐transcriptional regulation of CspA expression in Escherichia coli. Mol. Microbiol. 19: 231 – 240.en_US
dc.identifier.citedreferenceBrandi, A., R. Spurio, C. O. Gualerzi, and C. L. Pon. 1999. Massive presence of the Escherichia coli “major cold‐shock protein” CspA under nonstress conditions. EMBO J. 18: 1653 – 1659.en_US
dc.identifier.citedreferenceBrandi, L., S. Marzi, A. Fabbretti, C. Fleischer, W. E. Hill, C. O. Gualerzi, et al. 2004. The translation initiation functions of IF2: targets for thiostrepton inhibition. J. Mol. Biol. 4: 881 – 894.en_US
dc.identifier.citedreferenceBrandi, L., A. Fabbretti, P. Milon, M. Carotti, C. L. Pon, and C. O. Gualerzi. 2007. Methods for identifying compounds that specifically target translation. Methods Enzymol. 431: 229 – 267.en_US
dc.identifier.citedreferenceBrandi, L., A. Fabbretti, C. L. Pon, A. E. Dahlberg, and C. O. Gualerzi. 2008. Initiation of protein synthesis: a target for antimicrobials. Expert Opin. Ther. Targets 12: 519 – 534.en_US
dc.identifier.citedreferenceCammack, K. A., and H. E. Wade. 1965. The sedimentation behaviour of ribonuclease active and ‐inactive ribosomes from bacteria. Biochem. J. 96: 671 – 680.en_US
dc.identifier.citedreferenceDatsenko, K. A., and B. L. Wanner. 2000. One‐step inactivation of chromosomal genes in Escherichia coli K‐12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640 – 6645.en_US
dc.identifier.citedreferenceDümmler, A., A. M. Lawrence, and A. De Marco. 2005. Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors. Microb. Cell Fact. 4: 34.en_US
dc.identifier.citedreferenceGiangrossi, M., R. M. Exley, F. Le Hegarat, and C. L. Pon. 2001. Different in vivo localization of the Escherichia coli proteins CspD and CspA. FEMS Microbiol. Lett. 202: 171 – 176.en_US
dc.identifier.citedreferenceGiangrossi, M., A. M. Giuliodori, C. O. Gualerzi, and C. L. Pon. 2002. Selective expression of the β‐subunit of the nucleoid‐associated protein HU during cold shock in Escherichia coli. Mol. Microbiol. 44: 205 – 216.en_US
dc.identifier.citedreferenceGiangrossi, M., A. Brandi, A. M. Giuliodori, C. O. Gualerzi, and C. L. Pon. 2007. Cold shock‐induced de novo transcription and translation of infA and role of IF1 during cold adaptation. Mol. Microbiol. 64: 807 – 821.en_US
dc.identifier.citedreferenceGiuliodori, A. M., A. Brandi, C. O. Gualerzi, and C. L. Pon. 2004. Preferential translation of cold shock mRNAs during cold adaptation. RNA 10: 265 – 276.en_US
dc.identifier.citedreferenceGiuliodori, A. M., A. Brandi, M. Giangrossi, C. O. Gualerzi, and C. L. Pon. 2007. Cold‐stress induced de novo expression of infC and role of IF3 in cold‐shock translational bias. RNA 13: 1355 – 1365.en_US
dc.identifier.citedreferenceGiuliodori, A. M., F. Di Pietro, S. Marzi, B. Masquida, R. Wagner, P. Romby, et al. 2010. The cspA mRNA is a thermosensor that modulates translation of the cold shock protein CspA. Mol. Cell 15: 21 – 33.en_US
dc.identifier.citedreferenceGoldenberg, D., I. Azar, A. B. Oppenheim, A. Brandi, C. L. Pon, and C. O. Gualerzi. 1997. Role of Escherichia coli cspA promoter sequences and adaptation of translational apparatus in the cold shock response. Mol. Gen. Genet. 256: 282 – 290.en_US
dc.identifier.citedreferenceGoldstein, J. N., S. Pollitt, and M. Inouye. 1990. Major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 87: 283 – 287.en_US
dc.identifier.citedreferenceGualerzi, C. O., A. M. Giuliodori, and C. L. Pon. 2003. Transcriptional and post‐transcriptional control of cold‐shock gene expression. J. Mol. Biol. 331: 527 – 539.en_US
dc.identifier.citedreferenceGualerzi, C. O., A. M. Giuliodori, A. Brandi, F. Di Pietro, L. Piersimoni, A. Fabbretti, et al. 2011. Translation initiation at the root of the cold‐shock translational bias. Pp. 143 – 154 in M. V. Rodnina, W. Wintermeyer, and R. Green, eds. Ribosomes: structure, function, and dynamics. Springer‐Verlag Wien, Austria.en_US
dc.identifier.citedreferenceHardy, S. J., C. G. Kurland, P. Voynow, and G. Mora. 1969. The ribosomal proteins of Escherichia coli. Purification of the 30S ribosomal proteins. Biochemistry 8: 2897 – 2905.en_US
dc.identifier.citedreferenceJohnson, C. H., V. Kruft, and A. R. Subramanian. 1990. Identification of a plastid‐specific ribosomal protein in the 30S subunit of chloroplast ribosomes and isolation of the cDNA clone encoding its cytoplasmic precursor. J. Biol. Chem. 265: 12790 – 12795.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.