Show simple item record

Children's Oncology Group's 2013 blueprint for research: Renal tumors

dc.contributor.authorDome, Jeffrey S.en_US
dc.contributor.authorFernandez, Conrad V.en_US
dc.contributor.authorMullen, Elizabeth A.en_US
dc.contributor.authorKalapurakal, John A.en_US
dc.contributor.authorGeller, James I.en_US
dc.contributor.authorHuff, Vickien_US
dc.contributor.authorGratias, Eric J.en_US
dc.contributor.authorDix, David B.en_US
dc.contributor.authorEhrlich, Peter F.en_US
dc.contributor.authorKhanna, Geetikaen_US
dc.contributor.authorMalogolowkin, Marcio H.en_US
dc.contributor.authorAnderson, James R.en_US
dc.contributor.authorNaranjo, Arleneen_US
dc.contributor.authorPerlman, Elizabeth J.en_US
dc.date.accessioned2013-05-02T19:35:24Z
dc.date.available2014-08-01T19:11:39Zen_US
dc.date.issued2013-06en_US
dc.identifier.citationDome, Jeffrey S.; Fernandez, Conrad V.; Mullen, Elizabeth A.; Kalapurakal, John A.; Geller, James I.; Huff, Vicki; Gratias, Eric J.; Dix, David B.; Ehrlich, Peter F.; Khanna, Geetika; Malogolowkin, Marcio H.; Anderson, James R.; Naranjo, Arlene; Perlman, Elizabeth J. (2013). "Children's Oncology Group's 2013 blueprint for research: Renal tumors ." Pediatric Blood & Cancer 60(6): 994-1000. <http://hdl.handle.net/2027.42/97522>en_US
dc.identifier.issn1545-5009en_US
dc.identifier.issn1545-5017en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97522
dc.description.abstractRenal malignancies are among the most prevalent pediatric cancers. The most common is favorable histology Wilms tumor (FHWT), which has 5‐year overall survival exceeding 90%. Other pediatric renal malignancies, including anaplastic Wilms tumor, clear cell sarcoma, malignant rhabdoid tumor, and renal cell carcinoma, have less favorable outcomes. Recent clinical trials have identified gain of chromosome 1q as a prognostic marker for FHWT. Upcoming studies will evaluate therapy adjustments based on this and other novel biomarkers. For high‐risk renal tumors, new treatment regimens will incorporate biological therapies. A research blueprint, viewed from the perspective of the Children's Oncology Group, is presented. Pediatr Blood Cancer 2013; 60: 994–1000. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherMalignant Rhabdoid Tumoren_US
dc.subject.otherClear Cell Sarcomaen_US
dc.subject.otherRenal Cell Carcinomaen_US
dc.subject.otherWilms Tumoren_US
dc.titleChildren's Oncology Group's 2013 blueprint for research: Renal tumorsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPediatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pediatric Surgery, University of Michigan, CS Mott Children's Hospital, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDepartment of Genetics, MD Anderson Cancer Center, Houston, Texasen_US
dc.contributor.affiliationotherDepartment of Radiation Oncology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinoisen_US
dc.contributor.affiliationotherDivision of Oncology, Center for Cancer and Blood Disorders, Children's National Medical Center, Washington, District of Columbiaen_US
dc.contributor.affiliationotherDivision of Pediatric Hematology/Oncology, IWK Health Centre, Halifax, Nova Scotia, Canadaen_US
dc.contributor.affiliationotherPediatric Hematology/Oncology, Dana Farber Cancer Institute, Boston, Massachusettsen_US
dc.contributor.affiliationotherDivision of Hematology/Oncology/Bone Marrow Transplant, Children's Hospital of Wisconsinen_US
dc.contributor.affiliationotherMallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missourien_US
dc.contributor.affiliationotherPediatric Hematology/Oncology, British Columbia Children's Hospital, Vancouver, British Columbia, Canadaen_US
dc.contributor.affiliationotherDivision of Hematology/Oncology, Children's Hospital at Erlanger, University of Tennessee College of Medicine, Chattanooga, Tennesseeen_US
dc.contributor.affiliationotherDivision of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohioen_US
dc.contributor.affiliationotherDivision of Oncology, Center for Cancer and Blood Disorders, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010.en_US
dc.contributor.affiliationotherDepartment of Pathology, Northwestern University's Feinberg School of Medicine and the Robert H. Lurie Cancer Center, Chicago, Illinoisen_US
dc.contributor.affiliationotherDepartment of Biostatistics, Colleges of Medicine and Public Health & Health Professions, University of Florida, Gainesville, Floridaen_US
dc.contributor.affiliationotherUniversity of Nebraska Medical Center, Omaha, Nebraskaen_US
dc.identifier.pmid23255438en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97522/1/24419_ftp.pdf
dc.identifier.doi10.1002/pbc.24419en_US
dc.identifier.sourcePediatric Blood & Canceren_US
dc.identifier.citedreferenceKhanna G, Rosen N, Anderson JR, et al. Evaluation of diagnostic performance of CT for detection of tumor thrombus in children with Wilms tumor: A report from the Children's Oncology Group. Pediatr Blood Cancer 2011; 58: 551 – 555.en_US
dc.identifier.citedreferenceGreen DM, Lange JM, Peabody EM, et al. Pregnancy outcome after treatment for Wilms tumor: A report from the national Wilms tumor long‐term follow‐up study. J Clin Oncol 2010; 28: 2824 – 2830.en_US
dc.identifier.citedreferenceSteenman MJC, Rainier S, Dobry CJ, et al. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nat Genetics 1994; 7: 433 – 439.en_US
dc.identifier.citedreferenceFukuzawa R, Breslow NE, Morison IM, et al. Epigenetic differences between Wilms' tumours in white and east‐Asian children. Lancet 2004; 363: 446 – 451.en_US
dc.identifier.citedreferenceHu Q, Gao F, Tian W, et al. Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. J Clin Invest 2010; 121: 174 – 183.en_US
dc.identifier.citedreferenceShuman CBJ, Smith AC, Weksberg R. Beckwith–Wiedemann syndrome. In: RABT Pagon, CR Dolan, editors. GeneReviews (Internet). Seattle: University of Washington; 2010.en_US
dc.identifier.citedreferenceRuteshouser EC, Robinson SM, Huff V. Wilms tumor genetics: Mutations in WT1, WTX, and CTNNB1 account for only about one‐third of tumors. Genes Chromosomes Cancer 2008; 47: 461 – 470.en_US
dc.identifier.citedreferenceMaris JM, Morton CL, Gorlick R, et al. Initial testing of the aurora kinase A inhibitor MLN8237 by the pediatric preclinical testing program (PPTP). Pediatr Blood Cancer 2010; 55: 26 – 34.en_US
dc.identifier.citedreferencePeterson JK, Tucker C, Favours E, et al. In vivo evaluation of ixabepilone (BMS247550), a novel epothilone B derivative, against pediatric cancer models. Clin Cancer Res 2005; 11: 6950 – 6958.en_US
dc.identifier.citedreferenceCarol H, Lock R, Houghton PJ, et al. Initial testing (stage 1) of the kinesin spindle protein inhibitor ispinesib by the pediatric preclinical testing program. Pediatr Blood Cancer 2009; 53: 1255 – 1263.en_US
dc.identifier.citedreferenceVersteege I, Sevenet N, Lange J, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 1998; 394: 203 – 206.en_US
dc.identifier.citedreferenceBiegel JA, Zhou JY, Rorke LB, et al. Germ‐line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 1999; 59: 74 – 79.en_US
dc.identifier.citedreferenceEaton KW, Tooke LS, Wainwright LM, et al. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer 2010; 56: 7 – 15.en_US
dc.identifier.citedreferenceRoberts CW, Biegel JA. The role of SMARCB1/INI1 in development of rhabdoid tumor. Cancer Biol Ther 2009; 8: 412 – 416.en_US
dc.identifier.citedreferenceArgani P, Ladanyi M. Translocation carcinomas of the kidney. Clin.Lab Med 2005; 25: 363 – 378.en_US
dc.identifier.citedreferenceTsuda M, Davis IJ, Argani P, et al. TFE3 fusions activate MET signaling by transcriptional up‐regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res 2007; 67: 919 – 929.en_US
dc.identifier.citedreferenceWagner AJ, Goldberg JM, Dubois SG, et al. Tivantinib (ARQ 197), a selective inhibitor of mesenchymal‐epithelial transition factor, in patients with microphthalmia transcription factor‐associated tumors: Results of a multicenter phase 2 trial. Cancer 2012; 118: 5894 – 5902.en_US
dc.identifier.citedreferenceMalouf GG, Camparo P, Oudard S, et al. Targeted agents in metastatic Xp11 translocation/TFE3 gene fusion renal cell carcinoma (RCC): A report from the Juvenile RCC Network. Ann Oncol 2010; 21: 1834 – 1838.en_US
dc.identifier.citedreferenceParikh J, Coleman T, Messias N, et al. Temsirolimus in the treatment of renal cell carcinoma associated with Xp11.2 translocation/TFE gene fusion proteins: A case report and review of literature. Rare Tumors 2009; 1: e53.en_US
dc.identifier.citedreferenceChoueiri TK, Lim ZD, Hirsch MS, et al. Vascular endothelial growth factor‐targeted therapy for the treatment of adult metastatic Xp11.2 translocation renal cell carcinoma. Cancer 2010; 116: 5219 – 5225.en_US
dc.identifier.citedreferenceMalouf GG, Camparo P, Molinie V, et al. Transcription factor E3 and transcription factor EB renal cell carcinomas: Clinical features, biological behavior and prognostic factors. J Urol 2011; 185: 24 – 29.en_US
dc.identifier.citedreferenceLiu YC, Chang PM, Liu CY, et al. Sunitinib‐induced nephrotic syndrome in association with drug response in a patient with Xp11.2 translocation renal cell carcinoma. Jpn J Clin Oncol 2011; 41: 1277 – 1281.en_US
dc.identifier.citedreferenceDome JS, Bockhold CA, Li SM, et al. High telomerase RNA expression level is an adverse prognostic factor for favorable‐histology Wilms' tumor. J Clin Oncol 2005; 23: 9138 – 9145.en_US
dc.identifier.citedreferenceHuang CC, Gadd S, Breslow N, et al. Predicting relapse in favorable histology Wilms tumor using gene expression analysis: A report from the Renal Tumor Committee of the Children's Oncology Group. Clin Cancer Res 2009; 15: 1770 – 1778.en_US
dc.identifier.citedreferenceGadd S, Huff V, Huang CC, et al. Clinically relevant subsets identified by gene expression patterns support a revised ontogenic model of Wilms tumor: A Children's Oncology Group Study. Neoplasia 2012; 14: 742 – 756.en_US
dc.identifier.citedreferenceGreen DM, Breslow NE, Beckwith JB, et al. Treatment with nephrectomy only for small, stage I/favorable histology Wilms' tumor: A report from the National Wilms' Tumor Study Group. J Clin Oncol 2001; 19: 3719 – 3724.en_US
dc.identifier.citedreferenceShamberger RC, Anderson JR, Breslow NE, et al. Long‐term outcomes for infants with very low risk Wilms tumor treated with surgery alone in National Wilms Tumor Study‐5. Ann Surg 2010; 251: 555 – 558.en_US
dc.identifier.citedreferenceSredni ST, Gadd S, Huang CC, et al. Subsets of very low risk Wilms tumor show distinctive gene expression, histologic, and clinical features. Clin Cancer Res 2009; 15: 6800 – 6809.en_US
dc.identifier.citedreferencePerlman EJ, Grundy PE, Anderson JR, et al. WT1 mutation and 11P15 loss of heterozygosity predict relapse in very low‐risk wilms tumors treated with surgery alone: A children's oncology group study. J Clin Oncol 2011; 29: 698 – 703.en_US
dc.identifier.citedreferenceNatrajan R, Williams RD, Hing SN, et al. Array CGH profiling of favourable histology Wilms tumours reveals novel gains and losses associated with relapse. J Pathol 2006; 210: 49 – 58.en_US
dc.identifier.citedreferenceNatrajan R, Little SE, Sodha N, et al. Analysis by array CGH of genomic changes associated with the progression or relapse of Wilms' tumour. J Pathol 2007; 211: 52 – 59.en_US
dc.identifier.citedreferenceHing S, Lu YJ, Summersgill B, et al. Gain of 1q is associated with adverse outcome in favorable histology Wilms' tumors. Am J Pathol 2001; 158: 393 – 398.en_US
dc.identifier.citedreferenceLu YJ, Hing S, Williams R, et al. Chromosome 1q expression profiling and relapse in Wilms' tumour. Lancet 2002; 360: 385 – 386.en_US
dc.identifier.citedreferenceSpreafico F, Pritchard Jones K, Malogolowkin MH, et al. Treatment of relapsed Wilms tumors: lessons learned. Expert Rev Anticancer Ther 2009; 9: 1807 – 1815.en_US
dc.identifier.citedreferenceGreen DM, Cotton CA, Malogolowkin M, et al. Treatment of Wilms tumor relapsing after initial treatment with vincristine and actinomycin D: A report from the National Wilms Tumor Study Group. Pediatr Blood Cancer 2007; 48: 493 – 499.en_US
dc.identifier.citedreferenceReinhard H, Schmidt A, Furtwangler R, et al. Outcome of relapses of nephroblastoma in patients registered in the SIOP/GPOH trials and studies. Oncol Rep 2008; 20: 463 – 467.en_US
dc.identifier.citedreferenceBreslow NE, Ou SS, Beckwith JB, et al. Doxorubicin for favorable histology, Stage II–III Wilms tumor: Results from the National Wilms Tumor Studies. Cancer 2004; 101: 1072 – 1080.en_US
dc.identifier.citedreferenceGreen DM. The treatment of stages I–IV favorable histology Wilms' tumor. J Clin Oncol 2004; 22: 1366 – 1372.en_US
dc.identifier.citedreferencePritchard Jones K, Graf N, Bergeron C, et al. Doxorubicin can be safely omitted from the treatment of Stage II/III intermediate risk histology Wilms tumour: Results of the SIOP 2001 randomized trial. Pediatr Blood Cancer 2011; 57: 741.en_US
dc.identifier.citedreferenceGrills IS, Yan D, Martinez AA, et al. Potential for reduced toxicity and dose escalation in the treatment of inoperable non‐small‐cell lung cancer: A comparison of intensity‐modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys 2003; 57: 875 – 890.en_US
dc.identifier.citedreferenceSchwarz M, Alber M, Lebesque JV, et al. Dose heterogeneity in the target volume and intensity‐modulated radiotherapy to escalate the dose in the treatment of non‐small‐cell lung cancer. Int.J Radiat Oncol Biol Phys 2005; 62: 561 – 570.en_US
dc.identifier.citedreferenceBreslow NE, Collins AJ, Ritchey ML, et al. End stage renal disease in patients with Wilms tumor: Results from the National Wilms tumor study group and the United States Renal Data System. J Urol 2005; 174: 1972 – 1975.en_US
dc.identifier.citedreferenceBerry DA, Eick SG. Adaptive assignment versus balanced randomization in clinical trials: A decision analysis. Stat Med 1995; 14: 231 – 246.en_US
dc.identifier.citedreferenceBerry DA. Bayesian clinical trials. Nat Rev Drug Discov 2006; 5: 27 – 36.en_US
dc.identifier.citedreferenceBerry DA. Adaptive clinical trials in oncology. Nat Rev Clin Oncol 2011; 9: 199 – 207.en_US
dc.identifier.citedreferenceMetzger ML, Stewart CF, Freeman BB III, et al. Topotecan is active against Wilms' tumor: Results of a multi‐institutional phase II study. J Clin Oncol 2007; 25: 3130 – 3136.en_US
dc.identifier.citedreferenceDome JS, Liu T, Krasin M, et al. Improved survival for patients with recurrent Wilms tumor: The experience at St. Jude Children's Research Hospital. J Pediatr Hematol Oncol 2002; 24: 192 – 198.en_US
dc.identifier.citedreferenceMalogolowkin M, Cotton CA, Green DM, et al. Treatment of Wilms tumor relapsing after initial treatment with vincristine, actinomycin D, and doxorubicin. A report from the National Wilms Tumor Study Group. Pediatr Blood Cancer 2008; 50: 236 – 241.en_US
dc.identifier.citedreferenceHa TC, Spreafico F, Graf N, et al. An international strategy to determine the role of high dose therapy in recurrent Wilms' tumour. Eur J Cancer 4: 2012.en_US
dc.identifier.citedreferenceDome JS, Cotton CA, Perlman EJ, et al. Treatment of anaplastic histology Wilms' tumor: Results from the fifth National Wilms' Tumor Study. J Clin Oncol 2006; 24: 2352 – 2358.en_US
dc.identifier.citedreferenceGraf N, van Tinteren H, Bergeron C, et al. Characteristics and outcome of stage II and III non‐anaplastic Wilms' tumour treated according to the SIOP trial and study 93‐01. Eur J Cancer 2012; 48: 3240 – 3248.en_US
dc.identifier.citedreferenceTomlinson GE, Breslow NE, Dome J, et al. Rhabdoid tumor of the kidney in the National Wilms' Tumor Study: Age at diagnosis as a prognostic factor. J Clin Oncol 2005; 23: 7641 – 7645.en_US
dc.identifier.citedreferencevan den Heuvel‐Eibrink MM, van Tinteren H, Rehorst H, et al. Malignant rhabdoid tumours of the kidney (MRTKs), registered on recent SIOP protocols from 1993 to 2005: A report of the SIOP renal tumour study group. Pediatr Blood Cancer 2011; 56: 733 – 737.en_US
dc.identifier.citedreferenceGeller JI, Dome JS. Local lymph node involvement does not predict poor outcome in pediatric renal cell carcinoma. Cancer 2004; 101: 1575 – 1583.en_US
dc.identifier.citedreferenceIndolfi P, Terenziani M, Casale F, et al. Renal cell carcinoma in children: A clinicopathologic study. J Clin Oncol 2003; 21: 530 – 535.en_US
dc.identifier.citedreferenceTermuhlen AM, Tersak JM, Liu Q, et al. Twenty‐five year follow‐up of childhood Wilms tumor: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer 2011; 57: 1210 – 1216.en_US
dc.identifier.citedreferenceHowlader NNA, Krapcho M, Neyman N, et al., SEER Cancer Statistics Review, 1975–2008, 2011; http://seer.cancer.gov/csr/1975_2008/csr/1975_2008/en_US
dc.identifier.citedreferenceGrundy PE, Breslow NE, Li S, et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable‐histology Wilms tumor: A report from the National Wilms Tumor Study Group. J Clin Oncol 2005; 23: 7312 – 7321.en_US
dc.identifier.citedreferenceHamilton TE, Ritchey ML, Haase GM, et al. The management of synchronous bilateral Wilms tumor: A report from the National Wilms Tumor Study Group. Ann Surg 2011; 253: 1004 – 1010.en_US
dc.identifier.citedreferenceSeibel NL, Sun J, Anderson JR, et al. Outcome of clear cell sarcoma of the kidney (CCSK) treated on the National Wilms Tumor Study‐5 (NWTS). J Clin Oncol 2006; 24: 502S.en_US
dc.identifier.citedreferenceBreslow NE, Lange JM, Friedman DL, et al. Secondary malignant neoplasms after Wilms tumor: An international collaborative study. Int J Cancer 2009; 127: 657 – 666.en_US
dc.identifier.citedreferenceGreen DM, Grigoriev YA, Nan B, et al. Congestive heart failure after treatment for Wilms' tumor: A report from the National Wilms' Tumor Study group. J Clin Oncol 2001; 19: 1926 – 1934.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.