Show simple item record

pH‐sensitive residues in the p19 RNA silencing suppressor protein from carnation Italian ringspot virus affect siRNA binding stability

dc.contributor.authorLaw, Sean M.en_US
dc.contributor.authorZhang, Bin W.en_US
dc.contributor.authorBrooks, Charles L.en_US
dc.date.accessioned2013-05-02T19:35:26Z
dc.date.available2014-07-01T15:53:37Zen_US
dc.date.issued2013-05en_US
dc.identifier.citationLaw, Sean M.; Zhang, Bin W.; Brooks, Charles L. (2013). "pH‐sensitive residues in the p19 RNA silencing suppressor protein from carnation Italian ringspot virus affect siRNA binding stability." Protein Science 22(5): 595-604. <http://hdl.handle.net/2027.42/97527>en_US
dc.identifier.issn0961-8368en_US
dc.identifier.issn1469-896Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97527
dc.description.abstractTombusviruses , such as Carnation Italian ringspot virus (CIRV), encode a protein homodimer called p19 that is capable of suppressing RNA silencing in their infected hosts by binding to and sequestering short‐interfering RNA (siRNA) away from the RNA silencing pathway. P19 binding stability has been shown to be sensitive to changes in pH but the specific amino acid residues involved have remained unclear. Using constant pH molecular dynamics simulations, we have identified key pH‐dependent residues that affect CIRV p19–siRNA binding stability at various pH ranges based on calculated changes in the free energy contribution from each titratable residue. At high pH, the deprotonation of Lys60, Lys67, Lys71, and Cys134 has the largest effect on the binding stability. Similarly, deprotonation of several acidic residues (Asp9, Glu12, Asp20, Glu35, and/or Glu41) at low pH results in a decrease in binding stability. At neutral pH, residues Glu17 and His132 provide a small increase in the binding stability and we find that the optimal pH range for siRNA binding is between 7.0 and 10.0. Overall, our findings further inform recent experiments and are in excellent agreement with data on the pH‐dependent binding profile.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherPH‐Dependenceen_US
dc.subject.otherCIRV P19en_US
dc.subject.otherConstant PH Molecular Dynamics Simulationsen_US
dc.subject.otherProtein–RNA Interactionsen_US
dc.titlepH‐sensitive residues in the p19 RNA silencing suppressor protein from carnation Italian ringspot virus affect siRNA binding stabilityen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, MI 48109en_US
dc.contributor.affiliationumDepartment of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.identifier.pmid23450521en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97527/1/2243_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97527/2/PRO_2243_sm_SuppInfo.pdf
dc.identifier.doi10.1002/pro.2243en_US
dc.identifier.sourceProtein Scienceen_US
dc.identifier.citedreferenceWallace JA, Wang YH, Shi CY, Pastoor KJ, Nguyen BL, Xia K, Shen JK ( 2011 ) Toward accurate prediction of pK(a) values for internal protein residues: the importance of conformational relaxation and desolvation energy. Proteins 79: 3364 – 3373.en_US
dc.identifier.citedreferenceScholthof HB ( 2006 ) Timeline—the Tombusvirus‐encoded P19: from irrelevance to elegance. Nat Rev Microbiol 4: 405 – 411.en_US
dc.identifier.citedreferenceFiser A, Do RKG, Sali A ( 2000 ) Modeling of loops in protein structures. Protein Sci 9: 1753 – 1773.en_US
dc.identifier.citedreferenceSali A, Blundell TL ( 1993 ) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779 – 815.en_US
dc.identifier.citedreferenceFeig M, Karanicolas J, Brooks CL III ( 2004 ) MMTSB tool set: enhanced sampling and multiscale modeling methods for applications in structural biology. J Mol Graphics Model 22: 377 – 395.en_US
dc.identifier.citedreferenceBrooks BR, Brooks CL III, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M ( 2009 ) CHARMM: the biomolecular simulation program. J Comput Chem 30: 1545 – 1614.en_US
dc.identifier.citedreferenceChen JH, Im WP, Brooks CL III ( 2006 ) Balancing solvation and intramolecular interactions: toward a consistent generalized born force field. J Am Chem Soc 128: 3728 – 3736.en_US
dc.identifier.citedreferenceIm WP, Lee MS, Brooks CL III ( 2003 ) Generalized born model with a simple smoothing function. J Comput Chem 24: 1691 – 1702.en_US
dc.identifier.citedreferenceFoloppe N, MacKerell AD ( 2000 ) All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 21: 86 – 104.en_US
dc.identifier.citedreferenceMacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph‐McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz‐Kuczera J, Yin D, Karplus M ( 1998 ) All‐atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102: 3586 – 3616.en_US
dc.identifier.citedreferenceMacKerell AD, Feig M, Brooks CL III ( 2004 ) Extending the treatment of backbone energetics in protein force fields: limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25: 1400 – 1415.en_US
dc.identifier.citedreferenceSrinivasan J, Trevathan MW, Beroza P, Case DA ( 1999 ) Application of a pairwise generalized Born model to proteins and nucleic acids: inclusion of salt effects. Theor Chem Acc 101: 426 – 434.en_US
dc.identifier.citedreferenceKhandogin J, Chen JH, Brooks CL III ( 2006 ) Exploring atomistic details of pH‐dependent peptide folding. Proc Natl Acad Sci USA 103: 18546 – 18550.en_US
dc.identifier.citedreferenceKhandogin J, Brooks CL III ( 2007 ) Linking folding with aggregation in Alzheimer's beta‐amyloid peptides. Proc Natl Acad Sci USA 104: 16880 – 16885.en_US
dc.identifier.citedreferenceNina M, Beglov D, Roux B ( 1997 ) Atomic radii for continuum electrostatics calculations based on molecular dynamics free energy simulations. J Phys Chem B 101: 5239 – 5248.en_US
dc.identifier.citedreferenceBanavali NK, Roux B ( 2002 ) Atomic radii for continuum electrostatics calculations on nucleic acids. J Phys Chem B 106: 11026 – 11035.en_US
dc.identifier.citedreferenceSchrödinger L. The PyMOL Molecular Graphics System, Version 1.3. Schrödinger, LLC.en_US
dc.identifier.citedreferenceFoloppe N, Sagemark J, Nordstrand K, Berndt KD, Nilsson L ( 2001 ) Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins. J Mol Biol 310: 449 – 470.en_US
dc.identifier.citedreferenceFoloppe N, Nilsson L ( 2004 ) The glutaredoxin ‐C‐P‐Y‐C‐ motif: influence of peripheral residues. Structure 12: 289 – 300.en_US
dc.identifier.citedreferenceNozaki Y, Tanford C, Examination of titration behavior. In: Hirs CHW, Ed. ( 1967 ) Methods enzymol. New York: Academic Press,Vol. 11, pp 715 – 734.en_US
dc.identifier.citedreferenceTanford C ( 1970 ) Protein denaturation: part C. Theoretical models for the mechanism of denaturation. Adv Prot Chem 24: 1 – 95.en_US
dc.identifier.citedreferenceWyman J ( 1964 ) Linked functions and reciprocal effects in hemoglobin—a 2nd look. Adv Prot Chem 19: 223 – 286.en_US
dc.identifier.citedreferenceYang AS, Honig B ( 1993 ) On the pH‐dependence of protein stability. J Mol Biol 231: 459 – 474.en_US
dc.identifier.citedreferenceFire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC ( 1998 ) Potent and specific genetic interference by double‐stranded RNA in Caenorhabditis elegans. Nature 391: 806 – 811.en_US
dc.identifier.citedreferenceHannon GJ ( 2002 ) Rna interference. Nature 418: 244 – 251.en_US
dc.identifier.citedreferenceVoinnet O ( 2001 ) RNA silencing as a plant immune system against viruses. Trends Genet 17: 449 – 459.en_US
dc.identifier.citedreferenceBernstein E, Caudy AA, Hammond SM, Hannon GJ ( 2001 ) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363 – 366.en_US
dc.identifier.citedreferenceHutvagner G, Simard MJ ( 2008 ) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Bio 9: 22 – 32.en_US
dc.identifier.citedreferenceVoinnet O, Pinto YM, Baulcombe DC ( 1999 ) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA 96: 14147 – 14152.en_US
dc.identifier.citedreferenceSilhavy D, Molnar A, Lucioli A, Szittya G, Hornyik C, Tavazza M, Burgyan J ( 2002 ) A viral protein suppresses RNA silencing and binds silencing‐generated, 21‐to 25‐nucleotide double‐stranded RNAs. EMBO J 21: 3070 – 3080.en_US
dc.identifier.citedreferenceYe KQ, Malinina L, Patel DJ ( 2003 ) Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426: 874 – 878.en_US
dc.identifier.citedreferenceVargason JM, Szittya G, Burgyan J, Hall TMT ( 2003 ) Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115: 799 – 811.en_US
dc.identifier.citedreferenceXia Z, Zhu ZH, Zhu J, Zhou RH ( 2009 ) Recognition mechanism of siRNA by viral p19 suppressor of RNA silencing: a molecular dynamics study. Biophys J 96: 1761 – 1769.en_US
dc.identifier.citedreferenceChu M, Desvoyes B, Turina M, Noad R, Scholthof HB ( 2000 ) Genetic dissection of tomato bushy stunt virus p19‐protein‐mediated host‐dependent symptom induction and systemic invasion. Virology 266: 79 – 87.en_US
dc.identifier.citedreferenceTurina M, Omarov R, Murphy JF, Bazaldua‐Hernandez C, Desvoyes B, Scholthof HB ( 2003 ) A newly identified role for Tomato bushy stunt virus P19 in short distance spread. Mol Plant Pathol 4: 67 – 72.en_US
dc.identifier.citedreferenceSagan SM, Koukiekolo R, Rodgers E, Goto NK, Pezacki JP ( 2007 ) Inhibition of siRNA binding to a p19 viral suppressor of RNA silencing by cysteine alkylation. Angew Chem Int Ed Engl 46: 2005 – 2009.en_US
dc.identifier.citedreferenceCheng J, Koukiekolo R, Kieliszkiewicz K, Sagan SM, Pezacki JP ( 2009 ) Cysteine residues of Carnation Italian Ringspot virus p19 suppressor of RNA silencing maintain global structural integrity and stability for siRNA binding. Biochim Biophys Acta 1794: 1197 – 1203.en_US
dc.identifier.citedreferencePapp I, Mette MF, Aufsatz W, Daxinger L, Schauer SE, Ray A, van der Winden J, Matzke M, Matzke AJM ( 2003 ) Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132: 1382 – 1390.en_US
dc.identifier.citedreferenceLakatos L, Szittya G, Silhavy D, Burgyan J ( 2004 ) Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J 23: 876 – 884.en_US
dc.identifier.citedreferenceChapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC ( 2004 ) Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Gene Dev 18: 1179 – 1186.en_US
dc.identifier.citedreferenceDunoyer P, Lecellier CH, Parizotto EA, Himber C, Voinnet O ( 2004 ) Probing the microRNA and small interfering RNA pathways with virus‐encoded suppressors of RNA silencing. Plant Cell 16: 1235 – 1250.en_US
dc.identifier.citedreferenceLi WX, Li HW, Lu R, Li F, Dus M, Atkinson P, Brydon EWA, Johnson KL, Garcia‐Sastre A, Ball LA, Palese P, Ding SW ( 2004 ) Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci USA 101: 1350 – 1355.en_US
dc.identifier.citedreferenceLecellier CH, Dunoyer P, Arar K, Lehmann‐Che J, Eyquem S, Himber C, Saib A, Voinnet O ( 2005 ) A cellular MicroRNA mediates antiviral defense in human cells. Science 308: 557 – 560.en_US
dc.identifier.citedreferenceLu R, Maduro M, Li F, Li HW, Broitman‐Maduro G, Li WX, Ding SW ( 2005 ) Animal virus replication and RNAi‐mediated antiviral silencing in Caenorhabditis elegans. Nature 436: 1040 – 1043.en_US
dc.identifier.citedreferenceVoinnet O, Rivas S, Mestre P, Baulcombe D ( 2003 ) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33: 949 – 956.en_US
dc.identifier.citedreferenceCheng J, Sagan SM, Assem N, Koukiekolo R, Goto NK, Pezacki JP ( 2007 ) Stabilized recombinant suppressors of RNA silencing: functional effects of linking monomers of Carnation Italian Ringspot virus p19. Biochim Biophys Acta 1774: 1528 – 1535.en_US
dc.identifier.citedreferenceCalabrese JM, Sharp PA ( 2006 ) Characterization of the short RNAs bound by the P19 suppressor of RNA silencing in mouse embryonic stem cells. RNA 12: 2092 – 2102.en_US
dc.identifier.citedreferenceJin JM, Cid M, Poole CB, McReynolds LA ( 2010 ) Protein mediated miRNA detection and siRNA enrichment using p19. Biotechniques 48: Xvii – Xxiii.en_US
dc.identifier.citedreferenceKoukiekolo R, Jakubek ZJ, Cheng J, Sagan SM, Pezacki JP ( 2009 ) Studies of a viral suppressor of RNA silencing p19‐CFP fusion protein: a FRET‐based probe for sensing double‐stranded fluorophore tagged small RNAs. Biophys Chem 143: 166 – 169.en_US
dc.identifier.citedreferenceKoukiekolo R, Sagan SM, Pezacki JP ( 2007 ) Effects of pH and salt concentration on the siRNA binding activity of the RNA silencing suppressor protein p19. FEBS Lett 581: 3051 – 3056.en_US
dc.identifier.citedreferenceAlexov E, Mehler EL, Baker N, Baptista AM, Huang Y, Milletti F, Nielsen JE, Farrell D, Carstensen T, Olsson MHM, Shen JK, Warwicker J, Williams S, Word JM ( 2011 ) Progress in the prediction of pK(a) values in proteins. Proteins 79: 3260 – 3275.en_US
dc.identifier.citedreferenceMongan J, Case DA ( 2005 ) Biomolecular simulations at constant pH. Curr Opin Struct Biol 15: 157 – 163.en_US
dc.identifier.citedreferenceWallace JA, Shen JK ( 2009 ) Predicting pKa values with continuous constant pH molecular dynamics. Methods Enzymol 466: 455 – 475.en_US
dc.identifier.citedreferenceBurgi R, Kollman PA, van Gunsteren WF ( 2002 ) Simulating proteins at constant pH: an approach combining molecular dynamics and Monte Carlo simulation. Proteins 47: 469 – 480.en_US
dc.identifier.citedreferenceBaptista AM, Teixeira VH, Soares CM ( 2002 ) Constant‐pH molecular dynamics using stochastic titration. J Chem Phys 117: 4184 – 4200.en_US
dc.identifier.citedreferenceMachuqueiro M, Baptista AM ( 2006 ) Constant‐pH molecular dynamics with ionic strength effects: protonation‐conformation coupling in decalysine. J Phys Chem B 110: 2927 – 2933.en_US
dc.identifier.citedreferenceMachuqueiro M, Baptista AM ( 2008 ) Acidic range titration of HEWL using a constant‐pH molecular dynamics method. Proteins 72: 289 – 298.en_US
dc.identifier.citedreferenceMachuqueiro M, Baptista AM ( 2009 ) Molecular dynamics at constant pH and reduction potential: application to cytochrome c(3 ). J Am Chem Soc 131: 12586 – 12594.en_US
dc.identifier.citedreferenceDlugosz M, Antosiewicz JM ( 2004 ) Constant‐pH molecular dynamics simulations: a test case of succinic acid. Chem Phys 302: 161 – 170.en_US
dc.identifier.citedreferenceDlugosz M, Antosiewicz JM, Robertson AD ( 2004 ) Constant‐pH molecular dynamics study of protonation‐structure relationship in a heptapeptide derived from ovomucoid third domain. Phys Rev E 69: 021915.en_US
dc.identifier.citedreferenceMongan J, Case DA, McCammon JA ( 2004 ) Constant pH molecular dynamics in generalized born implicit solvent. J Comput Chem 25: 2038 – 2048.en_US
dc.identifier.citedreferenceMongan J, Case DA, McCammon J ( 2004 ) Discrete‐state constant pH molecular dynamics in generalized born implicit solvent. Protein Sci 13: 219.en_US
dc.identifier.citedreferenceMeng YL, Roitberg AE ( 2010 ) Constant pH replica exchange molecular dynamics in biomolecules using a discrete protonation model. J Chem Theory Comput 6: 1401 – 1412.en_US
dc.identifier.citedreferenceWilliams SL, de Oliveira CAF, McCammon JA ( 2010 ) Coupling constant pH molecular dynamics with accelerated molecular dynamics. J Chem Theory Comput 6: 560 – 568.en_US
dc.identifier.citedreferenceMesser BM, Roca M, Chu ZT, Vicatos S, Kilshtain AV, Warshel A ( 2010 ) Multiscale simulations of protein landscapes: using coarse‐grained models as reference potentials to full explicit models. Proteins 78: 1212 – 1227.en_US
dc.identifier.citedreferenceAqvist J, Warshel A ( 1993 ) Simulation of enzyme‐reactions using valence‐bond force‐fields and other hybrid quantum‐classical approaches. Chem Rev 93: 2523 – 2544.en_US
dc.identifier.citedreferenceLee MS, Salsbury FR, Brooks CL III ( 2004 ) Constant‐pH molecular dynamics using continuous titration coordinates. Proteins 56: 738 – 752.en_US
dc.identifier.citedreferenceKhandogin J, Brooks CL III ( 2005 ) Constant pH molecular dynamics with proton tautomerism. Biophys J 89: 141 – 157.en_US
dc.identifier.citedreferenceKhandogin J, Brooks CL III ( 2006 ) Toward the accurate first‐principles prediction of ionization equilibria in proteins. Biochemistry 45: 9363 – 9373.en_US
dc.identifier.citedreferenceGuo Z, Brooks CL III, Kong X ( 1998 ) Efficient and flexible algorithm for free energy calculations using the lambda‐dynamics approach. J Phys Chem B 102: 2032 – 2036.en_US
dc.identifier.citedreferenceKnight JL, Brooks CL III ( 2009 ) lambda‐dynamics free energy simulation methods. J Comput Chem 30: 1692 – 1700.en_US
dc.identifier.citedreferenceKong XJ, Brooks CL III ( 1996 ) lambda‐Dynamics: a new approach to free energy calculations. J Chem Phys 105: 2414 – 2423.en_US
dc.identifier.citedreferenceWallace JA, Shen JK ( 2011 ) Continuous constant pH molecular dynamics in explicit solvent with pH‐based replica exchange. J Chem Theory Comput 7: 2617 – 2629.en_US
dc.identifier.citedreferenceGoh GB, Knight JL, Brooks CL III ( 2012 ) Constant pH molecular dynamics simulations of nucleic acids in explicit solvent. J Chem Theory Comput 8: 36 – 46.en_US
dc.identifier.citedreferenceZhang BW, Brunetti L, Brooks CL III ( 2011 ) Probing pH‐dependent dissociation of HdeA dimers. J Am Chem Soc 133: 19393 – 19398.en_US
dc.identifier.citedreferenceShen JK ( 2010 ) Uncovering specific electrostatic interactions in the denatured states of proteins. Biophys J 99: 924 – 932.en_US
dc.identifier.citedreferenceShen JK ( 2010 ) A method to determine residue‐specific unfolded‐state pK(a) values from analysis of stability changes in single mutant cycles. J Am Chem Soc 132: 7258.en_US
dc.identifier.citedreferenceWallace JA, Shen JK ( 2012 ) Unraveling a trap‐and‐trigger mechanism in the pH‐sensitive self‐assembly of spider silk proteins. J Phys Chem Lett 3: 658 – 662.en_US
dc.identifier.citedreferenceArthur EJ, Yesselman JD, Brooks CL III ( 2011 ) Predicting extreme pK(a) shifts in staphylococcal nuclease mutants with constant pH molecular dynamics. Proteins 79: 3276 – 3286.en_US
dc.identifier.citedreferenceUhrig JF, Canto T, Marshall D, MacFarlane SA ( 2004 ) Relocalization of nuclear ALY proteins to the cytoplasm by the tomato bushy stunt virus P19 pathogenicity protein. Plant Physiol 135: 2411 – 2423.en_US
dc.identifier.citedreferencePark JW, Faure‐Rabasse S, Robinson MA, Desvoyes B, Scholthof HB ( 2004 ) The multifunctional plant viral suppressor of gene silencing P19 interacts with itself and an RNA binding host protein. Virology 323: 49 – 58.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.