Show simple item record

Two models of cross polar cap potential saturation compared: Siscoe‐Hill model versus Kivelson‐Ridley model

dc.contributor.authorGao, Yeen_US
dc.contributor.authorKivelson, Margaret G.en_US
dc.contributor.authorWalker, Raymond J.en_US
dc.date.accessioned2013-05-02T19:35:26Z
dc.date.available2014-03-03T15:09:25Zen_US
dc.date.issued2013-02en_US
dc.identifier.citationGao, Ye; Kivelson, Margaret G.; Walker, Raymond J. (2013). "Two models of cross polar cap potential saturation compared: Siscoe‐Hill model versus Kivelson‐Ridley model." Journal of Geophysical Research: Space Physics 118(2): 794-803. <http://hdl.handle.net/2027.42/97530>en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97530
dc.description.abstractThe cross polar cap potential is considered an instantaneous monitor of the rate at which magnetic flux couples the solar wind to the Earth's magnetosphere‐ionosphere system. Studies have shown that the cross polar cap potential responds linearly to the solar wind electric field under nominal solar wind conditions but asymptotes to the order of 200 kV for large electric field. Saturation of the cross polar cap potential is also found to occur in MHD simulations. Several mechanisms have been proposed to explain this phenomenon. Two well‐developed models are those of Siscoe et al . (2002), herein referred to as the Siscoe‐Hill model, and of Kivelson and Ridley (2008), herein referred to as the Kivelson‐Ridley model. In this study, we compare the mathematical formulas as well as the predictions of the two models with data. We find that the two models predict similar saturation limits. Their difference can be expressed in terms of a factor, which is close to unity during a saturation interval. A survey of the differences in the model predictions show that, on average, the potential of the Kivelson‐Ridley model is smaller than that of the Siscoe‐Hill model by 10 kV. Measurements of AMIE, DMSP, PC index, and SuperDARN are used to differentiate between the two models. However, given the uncertainties of the measurements, it is impossible to conclude that one model does a better job than the other of predicting the observed cross polar cap potentials. Key Points Siscoe‐Hill model and Kivelson‐Ridley model are saturation models. These two models predict similar saturated potentials. It is impossible to prefer one model given the uncertainties in observations.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCross Polar Cap Potentialen_US
dc.subject.otherBoyle Modelen_US
dc.subject.otherAMIE, DMSP, PC Index, SuperDARNen_US
dc.subject.otherKivelson‐Ridley Modelen_US
dc.subject.otherSiscoe‐Hill Modelen_US
dc.subject.otherSaturationen_US
dc.titleTwo models of cross polar cap potential saturation compared: Siscoe‐Hill model versus Kivelson‐Ridley modelen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97530/1/jgra50124.pdf
dc.identifier.doi10.1002/jgra.50124en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceRidley, A. J., and E. A. Kihn ( 2004 ), Polar cap index comparisons with AMIE cross polar cap potential, electric field, and polar cap area, Geophys. Res. Lett., 31, L07801.en_US
dc.identifier.citedreferenceKan, J. R., and L. C. Lee ( 1979 ), Energy coupling function and solar wind‐magnetosphere dynamo, Geophys. Res. Lett., 6, 577 – 580.en_US
dc.identifier.citedreferenceKivelson, M. G., and A. J. Ridley ( 2008 ), Saturation of the polar cap potential: Inference from Alfvén wing arguments, J. Geophys. Res., 113 ( A5 ), A05214, doi: 10.1029/2007JA012302.en_US
dc.identifier.citedreferenceLavraud, B., and J. E. Borovsky ( 2008 ), Altered solar wind‐magnetosphere interaction at low Mach numbers: Coronal mass ejections, J. Geophys. Res., 113 ( A9 ), A00B08, doi: 10.1029/2008JA013192.en_US
dc.identifier.citedreferenceMerkin, V. G., A. S. Sharma, K. Papadopoulos, G. Milikh, J. Lyon, and C. Goodrich ( 2005 ), Global MHD simulations of the strongly driven magnetosphere: Modeling of the transpolar potential saturation, J. Geophys. Res., 110 ( A9 ), A09203, doi: 10.1029/2004JA010993.en_US
dc.identifier.citedreferenceMerkine, V. G., K. Papadopoulos, G. Milikh, A. S. Sharma, X. Shao, J. Lyon, and C. Goodrich ( 2003 ), Effects of the solar wind electric field and ionospheric conductance on the cross polar cap potential: Results of global MHD modeling, Geophys. Res. Lett., 30 ( 23 ), 2180, doi: 10.1029/2003GL017903.en_US
dc.identifier.citedreferenceNagatsuma, T. ( 2002 ), Saturation of polar cap potential by intense solar wind electric fields, Geophys. Res. Lett., 29 ( 10 ), 1422, doi: 10.1029/2001GL014202.en_US
dc.identifier.citedreferenceOber, D. M., N. C. Maynard, and W. J. Burke ( 2003 ), Testing the Hill model of transpolar potential saturation, J. Geophys. Res., 108 ( A12 ), 1467, doi: 10.1029/2003JA010154.en_US
dc.identifier.citedreferenceRaeder, J., Y. L. Wang, T. J. Fuller‐Rowell, and H. J. Singer ( 2001 ), Global simulation of magnetospheric space weather effects of the Bastille day storm, Sol. Phys., 204 ( 1–2 ), 323 – 337, doi: 10.1023/A:1014228230714.en_US
dc.identifier.citedreferenceRichmond, A. D., and Y. Kamide ( 1988 ), Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Technique, J. Geophys. Res., 93 ( A6 ), 5741 – 5759, doi: 10.1029/JA093iA06p05741.en_US
dc.identifier.citedreferenceRichmond, A. D., et al. ( 1988 ), Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Combined incoherent‐scatter radar and magnetometer measurements for January 18–19, 1984, J. Geophys. Res., 93 ( A6 ), 5760 – 5776, doi: 10.1029/JA093iA06p05760.en_US
dc.identifier.citedreferenceRidley, A. J. ( 2005 ), A new formulation for the ionospheric cross polar cap potential including saturation effects, Ann. Geophys., 23 ( 11 ), 3533 – 3547, doi: 10.5194/angeo‐23‐3533‐2005.en_US
dc.identifier.citedreferenceRuohoniemi, J. M., and K. B. Baker ( 1998 ), Large‐scale imaging of high‐latitude convection with Super Dual Auroral Radar Network HF radar observations, J. Geophys. Res., 103 ( A9 ), 20,797 – 20,811, doi: 10.1029/98ja01288.en_US
dc.identifier.citedreferenceRussell, C. T., G. Lu, and J. G. Luhmann ( 2000 ), Lessons from the ring current injection during the September 24, 25, 1998 storm, Geophys. Res. Lett., 27 ( 9 ), 1371 – 1374, doi: 10.1029/1999GL003718.en_US
dc.identifier.citedreferenceShepherd, S. G., R. A. Greenwald, and J. M. Ruohoniemi ( 2002 ), Cross polar cap potentials measured with Super Dual Auroral Radar Network during quasi‐steady solar wind and interplanetary magnetic field conditions, J. Geophys. Res., 107 ( A7 ), 1094, doi: 10.1029/2001JA000152.en_US
dc.identifier.citedreferenceSiscoe, G. L. ( 2011 ), Aspects of global coherence of magnetospheric behavior, J. Atmos. Sol‐Terr. Phy., 73 ( 4 ), 402 – 419, doi:10.1016/j.jastp.2010.11.005.en_US
dc.identifier.citedreferenceSiscoe, G. L., J. Raeder, and A. J. Ridley ( 2004 ), Transpolar potential saturation models compared, J. Geophys. Res., 109 ( A9 ), A09203, doi: 10.1029/2003JA010318.en_US
dc.identifier.citedreferenceSiscoe, G. L., G. M. Erickson, B. U. Ö. Sonnerup, N. C. Maynard, J. A. Schoendorf, K. D. Siebert, D. R. Weimer, W. W. White, and G. R. Wilson ( 2002 ), Hill model of transpolar potential saturation: Comparisons with MHD simulations, J. Geophys. Res., 107 ( A6 ), 1075, doi: 10.1029/2001JA000109.en_US
dc.identifier.citedreferenceTroshichev, O. A., V. G. Andrezen, S. Vennerstrom, and E. Friis‐Christensen ( 1988 ), Magnetic activity in the polar cap—A new index, Planet. Space Sci., 36, 1095 – 1102.en_US
dc.identifier.citedreferenceTroshichev, O. A., H. Hayakawa, A. Matsuoka, T. Mukai, and K. Tsuruda ( 1996 ), Cross polar cap diameter and voltage as a function of PC index and interplanetary quantities, J. Geophys. Res., 101, 13,429 – 13,436.en_US
dc.identifier.citedreferenceWeimer, D. R. ( 2004 ), Correction to “Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique,” J. Geophys. Res., 109 ( A12 ), A12104, doi: 10.1029/2004JA010691.en_US
dc.identifier.citedreferenceWeimer, D. R., D. M. Ober, N. C. Maynard, M. R. Collier, D. J. McComas, N. F. Ness, C. W. Smith, and J. Watermann ( 2003 ), Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique, J. Geophys. Res., 108 ( A1 ), 1026, doi: 10.1029/2002JA009405.en_US
dc.identifier.citedreferenceBaker, J. B. H., R. A. Greenwald, J. M. Ruohoniemi, K. Oksavik, J. W. Gjerloev, L. J. Paxton, and M. R. Hairston ( 2007 ), Observations of ionospheric convection from the Wallops SuperDARN radar at middle latitudes, J. Geophys. Res., 112 ( A1 ), A01303, doi: 10.1029/2006JA011982.en_US
dc.identifier.citedreferenceBorovsky, J. E., B. Lavraud, and M. M. Kuznetsova ( 2009 ), Polar cap potential saturation, dayside reconnection, and changes to the magnetosphere, J. Geophys. Res., 114 ( A3 ), A03224.en_US
dc.identifier.citedreferenceBoyle, C. B., P. H. Reiff, and M. R. Hairston ( 1997 ), Empirical polar cap potentials, J. Geophys. Res., 102 ( A1 ), 111 – 125, doi: 10.1029/96ja01742.en_US
dc.identifier.citedreferenceCleveland, W. S. ( 1979 ), Robust locally weighted regression and smoothing scatterplots, JASA, 74 ( 368 ), 829 – 836, doi: 10.2307/2286407.en_US
dc.identifier.citedreferenceEbihara, Y., N. Nishitani, T. Kikuchi, T. Ogawa, K. Hosokawa, M. C. Fok, and M. F. Thomsen ( 2009 ), Dynamical property of storm time subauroral rapid flows as a manifestation of complex structures of the plasma pressure in the inner magnetosphere, J. Geophys. Res., 114 ( A1 ), A01306, doi: 10.1029/2008JA013614.en_US
dc.identifier.citedreferenceGao, Y. ( 2012a ), Comparing the cross polar cap potentials measured by SuperDARN and AMIE during saturation intervals, J. Geophys. Res., 117 ( A8 ), A08325, doi: 10.1029/2012JA017690.en_US
dc.identifier.citedreferenceGao, Y. ( 2012b ), On anomalous departures from a linear relation between the polar cap index and its controlling factors in solar wind and magnetotail, J. Geophys. Res., 117 ( A6 ), A06201, doi: 10.1029/2012JA017721.en_US
dc.identifier.citedreferenceGao, Y., M. G. Kivelson, and R. J. Walker ( 2012a ), The linear dependence of polar cap index on its controlling factors in solar wind and magnetotail, J. Geophys. Res., 117 ( A5 ), A05213, doi: 10.1029/2011JA017229.en_US
dc.identifier.citedreferenceGao, Y., M. G. Kivelson, R. J. Walker, and J. M. Weygand ( 2012b ), Long‐term variation of driven and unloading effects on polar cap dynamics, J. Geophys. Res., 117 ( A2 ), A02203, doi: 10.1029/2011JA017149.en_US
dc.identifier.citedreferenceGao, Y., M. G. Kivelson, A. J. Ridley, J. M. Weygand, and R. J. Walker ( 2012c ), Utilizing the polar cap index to explore strong driving of polar cap dynamics, J. Geophys. Res., 117 ( A7 ), A07213, doi: 10.1029/2011JA017087.en_US
dc.identifier.citedreferenceHairston, M. R., R. A. Heelis, and F. J. Rich ( 1998 ), Analysis of the ionospheric cross polar cap potential drop using DMSP data during the National Space Weather Program study period, J. Geophys. Res., 103 ( A11 ), 26337 – 26347, doi: 10.1029/97JA03241.en_US
dc.identifier.citedreferenceHairston, M. R., T. W. Hill, and R. A. Heelis ( 2003 ), Observed saturation of the ionospheric polar cap potential during the 31 March 2001 storm, Geophys. Res. Lett., 30 ( 6 ), 1325, doi: 10.1029/2002GL015894.en_US
dc.identifier.citedreferenceHill, T. W., A. J. Dessler, and R. A. Wolf ( 1976 ), Mercury and Mars: The role of ionospheric conductivity in the acceleration of magnetospheric particles, Geophys. Res. Lett., 3 ( 8 ), 429 – 432, doi: 10.1029/GL003i008p00429.en_US
dc.identifier.citedreferenceJiang, F., M. G. Kivelson, R. J. Walker, K. K. Khurana, V. Angelopoulos, and T. Hsu ( 2011 ), A statistical study of the inner edge of the electron plasma sheet and the net convection potential as a function of geomagnetic activity, J. Geophys. Res., 116 ( A6 ), A06215, doi: 10.1029/2010JA016179.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.