Show simple item record

On-The-Fly Generation of Differential Resonance Scattering Probability Distribution Functions for Monte Carlo Codes.

dc.contributor.authorSunny, Eva Elizabethen_US
dc.description.abstractCurrent Monte Carlo codes use one of three models: (1) the asymptotic scattering model, (2) the free gas scattering model, or (3) the S(alpha,beta) model, depending on the neutron energy and the specific Monte Carlo code. This thesis addresses the consequences of using the free gas scattering model, which assumes that the neutron interacts with atoms in thermal motion in a monatomic gas in thermal equilibrium at material temperature, T. Most importantly, the free gas model assumes the scattering cross section is constant over the neutron energy range, which is usually a good approximation for light nuclei, but not for heavy nuclei where the scattering cross section may have several resonances in the epithermal region. Several researchers in the field have shown that the exact resonance scattering model is temperature-dependent, and neglecting the resonances in the lower epithermal range can under-predict resonance absorption due to the upscattering phenomenon mentioned above, leading to an over-prediction of keff by several hundred pcm. Existing methods to address this issue involve changing the neutron weights or implementing an extra rejection scheme in the free gas sampling scheme, and these all involve performing the collision analysis in the center-of-mass frame, followed by a conversion back to the laboratory frame to continue the random walk of the neutron. The goal of this thesis was to develop a sampling methodology that (1) accounted for the energy-dependent scattering cross sections in the collision analysis and (2) was performed in the laboratory frame, avoiding the conversion to the center-of-mass frame. The energy dependence of the scattering cross section was modeled with even-ordered polynomials (2nd and 4th order) to approximate the scattering cross section in Blackshaw’s equations for the moments of the differential scattering PDFs. These moments were used to sample the outgoing neutron speed and angle in the laboratory frame on-the-fly during the random walk of the neutron. Results for criticality studies on fuel pin and fuel assembly calculations using methods developed in this dissertation showed very close comparison to results using the reference Doppler-broadened rejection correction (DBRC) scheme.en_US
dc.subjectResonance Scattering in Monte Carlo Codesen_US
dc.subjectElastic Scattering in Lower Epithermal Energy Rangeen_US
dc.subjectDifferential Resonance Scattering Probability Distribution Functionsen_US
dc.titleOn-The-Fly Generation of Differential Resonance Scattering Probability Distribution Functions for Monte Carlo Codes.en_US
dc.description.thesisdegreedisciplineNuclear Engineering & Radiological Sciencesen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberMartin, William R.en_US
dc.contributor.committeememberViswanath, Divakaren_US
dc.contributor.committeememberBrown, Forrest Brooksen_US
dc.contributor.committeememberDownar, Thomas J.en_US
dc.contributor.committeememberHolloway, James Paulen_US
dc.subject.hlbsecondlevelNuclear Engineering and Radiological Sciencesen_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)

Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.


If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.