Show simple item record

Phage Display as a Tool for Probing Lipid A Biosynthesis.

dc.contributor.authorJenkins, Ronald J.en_US
dc.date.accessioned2013-06-12T14:26:52Z
dc.date.available2013-06-12T14:26:52Z
dc.date.issued2013en_US
dc.date.submitted2013en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98051
dc.description.abstractThe lipid A biosynthetic pathway is exclusive to gram-negative bacteria, thus making it an ideal target for antimicrobial drug discovery. Furthermore, two distinct acyltransferases, UDP-GlcNAc acyltransferase (LpxA) and UDP-3-O-(Acyl)-GlcN acyltransferase (LpxD), display structural and functional similarities within the pathway. Such similarities offer the potential to design inhibitors capable of targeting both active sites. This provides a unique paradigm to combating antimicrobial resistance by decreasing the likelihood that the bacteria would obtain resistance, through increasing the number of mutations necessary for the microbe to survive the therapeutic. Phage display was used to identify several LpxD-inhibitory peptides, one of which (RJPXD33) also inhibited LpxA (LpxD Kd = 7 uM; LpxA Kd = 22 uM) and one which was found to be selective for LpxD (RJPXD34; Kd = 31 uM). Both peptides displayed antimicrobial activity when expressed as N-terminal fusions to thioredoxin. A fluorescence polarization (FP) binding assay was developed for LpxD utilizing a fluorescein-labeled RJPXD33 (Kd = 600 nM) and for LpxA using a fluorescein-labeled Peptide 920 (Kd = 200 nM). With the FP binding assay, RJPXD33 was shown to bind competitively with acyl-ACP. RJPXD33 was co-crystallized with LpxA, in order to gain an understanding of how RJPXD33 binds to LpxA. The structural data suggested that RJPXD33 mimics the acyl-phosphopantetheine moiety of acyl-acyl carrier protein (ACP), the native substrate of LpxA. Biochemical characterization of truncated variations of RJPXD33 confirmed this model and showed that smaller peptides could be synthesized that could inhibit LpxA with similar potency. While RJPXD33 could not be crystallized with LpxD, a crosslinking strategy using photo-affinity derivatives of RJPXD33 was developed for mapping the peptide-protein interactions. Finally, the FP binding assay was employed to screen a small molecule library (~120,000 compounds) against LpxD. The hits were reconfirmed with a continuous, fluorescent enzyme assay developed for both LpxA and LpxD. Eleven compounds ranging in potency (IC50’s = 0.1 - 30 uM) were identified, three of which demonstrated in vivo toxicity in Escherichia coli lacking the multidrug efflux pump, TolC. These molecules provide a foundation for the future development of more potent small molecule inhibitors of LpxD.en_US
dc.language.isoen_USen_US
dc.subjectLipid Aen_US
dc.subjectPhage Displayen_US
dc.subjectLpxAen_US
dc.subjectLpxDen_US
dc.subjectEscherichia Colien_US
dc.titlePhage Display as a Tool for Probing Lipid A Biosynthesis.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMedicinal Chemistryen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberDotson, Garry Deanen_US
dc.contributor.committeememberFierke, Carol A.en_US
dc.contributor.committeememberWoodard, Ronald W.en_US
dc.contributor.committeememberSoellner, Matthew Bryanen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98051/1/jenkinsr_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.