Show simple item record

Comparative Study of Subauroral Polarization Streams with DMSP Observation and RAM Simulation

dc.contributor.authorWang, Huien_US
dc.contributor.authorMa, Shu‐yingen_US
dc.contributor.authorRidley, A. J.en_US
dc.date.accessioned2013-06-18T18:32:01Z
dc.date.available2013-06-18T18:32:01Z
dc.date.issued2009-05en_US
dc.identifier.citationWang, Hui ; Ma, Shu‐ying ; Ridley, A. J. (2009). "Comparative Study of Subauroral Polarization Streams with DMSP Observation and RAM Simulation." Chinese Journal of Geophysics 52(3): 531-540. <http://hdl.handle.net/2027.42/98118>en_US
dc.identifier.issn0898-9591en_US
dc.identifier.issn2326-0440en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98118
dc.description.abstractSubauroral Polarization Streams (SAPS) are fast westward plasma flows, located mainly at dusk and premidnight subauroral region. They are one of the important magnetosphere‐ionosphere‐thermosphere coupling processes. This work has simulated one storm time SAPS event with the Ring current‐Atmosphere Interaction Model (RAM) developed by University of Michigan. The model results are compared with the DMSP observations. It shows: the model results can be comparable with the observations in general; the latitude of the modeled SAPS peak velocity differed greatly from the observations; the observed SAPS velocities have two peaks around 18:00 UT and 20:00 UT, while the modeled have only one peak around 18:00 UT, which is due to the model's inability in the modeling of the substorm process.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSubauroral Polarization Streamsen_US
dc.subject.otherRam Modelen_US
dc.subject.otherStormen_US
dc.subject.otherSubstormen_US
dc.titleComparative Study of Subauroral Polarization Streams with DMSP Observation and RAM Simulationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98118/1/cjg21374.pdf
dc.identifier.doi10.1002/cjg2.1374en_US
dc.identifier.sourceChinese Journal of Geophysicsen_US
dc.identifier.citedreferenceAkasofu S I. Interplanetary energy flux associated with magnetospheric substorms. Planet. Space. Sci., 1979, 27: 425 – 431en_US
dc.identifier.citedreferenceAhn B ‐H, Richmond A D, Kamide Y, et al. An ionospheric conductance model based on ground magnetic disturbance data. J. Geophys. Res., 1998, 103 ( A7 ): 14769 – 14780, doi: 10.1029/97JA03088en_US
dc.identifier.citedreferenceIijima T, Potemra T A. The amplitude distribution of fieldaligned currents at northern latitudes observed by TRIAD. J. Geophys. Res., 1976, 81: 2165 – 2174en_US
dc.identifier.citedreferenceWang H, Lühr H, Ma S Y. Solar zenith angle and merging electric field control of field‐aligned currents: a statistical study of the Southern Hemisphere. J. Geophys. Res., 2005, 110 ( A03306 ): doi: 10.1029/2004JA010530en_US
dc.identifier.citedreferenceLiemohn M W, Ridley A J, Gallagher D L, et al. Dependence of plasmaspheric morphology on the electric field description during the recovery phase of the 17 April 2002 magnetic storm. J. Geophys. Res., 2004, 109 ( A03209 ): doi: 10.1029/2003JA010304en_US
dc.identifier.citedreferenceDessler A J, Parker E N. Hydromagnetic theory of geomagnetic storms. J. Geophys. Res., 1959, 64: 2239 – 2252en_US
dc.identifier.citedreferenceKan J R, Lee L C. Energy coupling function and solar wind magnetosphere dynamo. Geophys. Res. Lett., 1979, 6: 577 – 580en_US
dc.identifier.citedreferenceWang H, Ridley A J, Luehr H. Validation of the SpaceWeather Modeling Framework with observations from DMSP and CHAMP. Space Weather, 2008, 6 ( S03 ): doi: 10.1029/2007SW000355en_US
dc.identifier.citedreferenceKozyra J U, Liemohn M W. Ring current energy input and decay. Space Sci. Rev., 2003, 109: 105 – 131en_US
dc.identifier.citedreferenceDaglis I A, Kozyra J U. Outstanding issues of ring current dynamics. J. Atmos. Solar‐Terr. Phys., 2002, 64: 253 – 264en_US
dc.identifier.citedreferenceFu S Y, Zong Q G, Pu Z Y, et al. Effect of geomagnetic activity and solar‐cycle variation on the ring current ions. Chinese J. Geophys. (in Chinese), 2003, 46 ( 6 ): 725 – 730en_US
dc.identifier.citedreferenceXie L, Pu Z Y, Zhou X Z, et al. Formation of the storm‐time ring current. Chinese Science Bulletin (in Chinese), 2004, 49 ( 7 ): 716 – 723en_US
dc.identifier.citedreferenceGanushkina N Y, Pulkkinen T I, Bashkirov V F, et al. Formation of intense nose structures. Geophys. Res. Lett., 2001, 28 ( 3 ): 491 – 494en_US
dc.identifier.citedreferenceRidley A J, Kihn E A. Polar cap index comparisons with AMIE cross polar cap potential, electric field, and polar cap area. Geophys. Res. Lett., 2004, 31 ( L07801 ): doi: 10.1029/2003GL019113en_US
dc.identifier.citedreferenceKamide Y, Baumjohann W, Daglis I A, et al. Current understanding of magnetic storms: storm‐substorm relationships. J. Geophys. Res., 1998, 103: 17705 – 17728en_US
dc.identifier.citedreferenceGonzalez W D, Joselyn J A, Kamide Y, et al. What is a geomagnetic storm? J. Geophys. Res., 1994, 99: 5771 – 5792en_US
dc.identifier.citedreferenceFok M C, Moore T E, Delcourt D C, et al. Modeling of inner plasma sheet and ring current during substorms. J. Geophys. Res., 1999, 104: 14557 – 14569en_US
dc.identifier.citedreferenceAnderson P C, Hanson W B, Heelis R A, et al. A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution. J. Geophys. Res., 1993, 98 ( A4 ): 6069 – 6078en_US
dc.identifier.citedreferenceLiemohn M W, Kozyra J U. Lognormal form of the ring current energy content. J. Atmos. Solar‐Terr. Phys., 2003, 65 ( 5 ): 871 – 886en_US
dc.identifier.citedreferenceBirn J, Thomsen M F, Borovsky J E, et al. Characteristic plasma properties during dispersionless substorm injections at geosynchronous orbit. J. Geophys. Res., 1997, 102: 2309 – 2324en_US
dc.identifier.citedreferenceWeimer D R. An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event. J. Geophys. Res., 2001, 106: 407 – 416en_US
dc.identifier.citedreferenceAnderson P C, Heelis R A, Hanson W B. The ionospheric signatures of rapid subauroral ion drifts. J. Geophys. Res., 1991, 96 ( A4 ): 5785 – 5792en_US
dc.identifier.citedreferenceFoster J C, Rideout W. Storm enhanced density: magnetic conjugacy effects. Ann. Geophys., 2007, 25: 1791 – 1799en_US
dc.identifier.citedreferenceFoster J C, Vo H B. Average characteristics and activity dependence of the subauroral polarization stream. J. Geophys. Res., 2002, 107 ( A12 ): doi: 10.1029/2002JA009409en_US
dc.identifier.citedreferenceSpiro R W, Heelis R A, Hanson W B. Ion convection and the formation of the mid‐latitude F region ionization trough. J. Geophys. Res., 1978, 83 ( A9 ): 4255 – 4264en_US
dc.identifier.citedreferenceGalperin Y, Ponomarev V N, Zosimova A G. Plasma convection in the polar ionosphere. Ann. Geophys., 1974, 30 ( 1 ): 1 – 7en_US
dc.identifier.citedreferenceSpiro R W, Heelis R H, Hanson W B. Rapid sub‐auroral ion drifts observed by Atmospheric Explorer C. Geophys. Res. Lett., 1979, 6 ( 8 ): 657 – 660en_US
dc.identifier.citedreferenceYeh H ‐C, Foster J C, Rich F J, et al. Storm time electric field penetration observed at mid‐latitude. J. Geophys. Res., 1991, 96 ( A4 ): 5707 – 5721en_US
dc.identifier.citedreferenceJensen J W, Fejer B G. Longitudinal dependence of middle and low latitude zonal plasma drifts measured by DE‐2. Ann. Geophys., 2007, 25 ( 12 ): 2551 – 2559en_US
dc.identifier.citedreferenceWang H, Ridley A J, Luehr H, et al. Statistical study of the subauroral polarization streams: its dependence on the cross polar cap potential and subauroral conductance. J. Geophys. Res., 2008, doi: 10.1029/2008JA013529en_US
dc.identifier.citedreferenceGarner T W, Wolf R A, Spiro R W, et al. Magnetospheric electric fields and plasma sheet injection to low L‐shells during the 4‐5 June 1991 magnetic storm: comparison between the Rice Convection Model and observations. J. Geophys. Res., 2004, 109 ( A02214 ): doi: 10.1029/2003JA010208en_US
dc.identifier.citedreferenceLiemohn M W, Ridley A J, Brandt P C, et al. Parametric analysis of nightside conductance effects on inner magnetospheric dynamics for the 17 April 2002 storm. J. Geophys. Res., 2005, 110 ( A12 ): doi: 10.1029/2005JA011109en_US
dc.identifier.citedreferenceZheng Y, Brandt P C, Lui A T, et al. On ionospheric trough conductance and subauroral polarization streams: simulation results. J. Geophys. Res., 2008, 113 ( A04 ): doi: 10.1029/2007JA012532en_US
dc.identifier.citedreferenceAnderson P C, Hanson W B, Heelis R A, et al. A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution. J. Geophys. Res., 1993, 98 ( A4 ): 6069 – 6078en_US
dc.identifier.citedreferenceKarlsson T, Marklund G T, Blomberg L G. Subauroral electric fields observed by the Freja satellite: a statistical study. J. Geophys. Res., 1998, 103 ( A3 ): 4327 – 4341en_US
dc.identifier.citedreferenceHuang C ‐S, Foster J C. Correlation of the subauroral polarization streams (SAPS) with the D st index during severe magnetic storms. J. Geophys. Res., 2007, 112 ( A11302 ): doi: 10.1029/2007JA012584en_US
dc.identifier.citedreferenceSouthwood D J, Wolf R A. An assessment of the role of precipitation in magnetospheric convection. J. Geophys. Res., 1978, 83 ( A11 ): 5227 – 5232en_US
dc.identifier.citedreferenceFok M ‐C, Koyra J U, Nagy A F, et al. A decay model of equatorial ring current and the associated aeronomical consequences. J. Geophys. Res., 1993, 98 ( A11 ): 19381 – 19393en_US
dc.identifier.citedreferenceRich F J, Hairston M. Large‐scale convection patterns observed by DMSP. J. Geophys. Res., 1994, 99 ( A3 ): 3827 – 3844en_US
dc.identifier.citedreferenceLiemohn M W, Kozyra J U, Thomsen M F, et al. Dominant role of the asymmetric ring current in producing the stormtime Dst. J. Geophys. Res., 2001, 106 ( A6 ): 10883 – 10904en_US
dc.identifier.citedreferenceJordanova V K, Kistler L M, Kozyra J U, et al. Collisional losses of ring current ions. J. Geophys. Res., 1996, 101: 111 – 126en_US
dc.identifier.citedreferenceYoung D T, Balsiger H, Geiss J. Correlations of magnteospheric ion composition with geomagnetic and solar activity. J. Geophys. Res., 1982, 87 ( A11 ): 9077 – 9096en_US
dc.identifier.citedreferenceLiemohn M W, Kozyra J U, Jordanova V K, et al. Analysis of early phase ring current recovery mechanisms during geomagnetic storms. Geophys. Res. Lett., 1999, 26: 2845 – 2848en_US
dc.identifier.citedreferenceRidley A J, Gombosi T I, DeZeeuw D L. Ionospheric control of the magnetosphere: conductance. Ann. Geophys., 2004, 22: 567 – 584en_US
dc.identifier.citedreferenceWeimer D R. A flexible IMF dependent model of high‐latitude electric potentials having “space weather” applications. Geophys. Res. Lett., 1996, 23: 2549 – 2552en_US
dc.identifier.citedreferenceMoen J, Brekke A. The solar flux influence on quiet time conductances in the auroral ionosphere. Geophys. Res. Lett., 1993, 20 ( 10 ): 971 – 974en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.