Show simple item record

Automated discovery of chemically reasonable elementary reaction steps

dc.contributor.authorZimmerman, Paul M.en_US
dc.date.accessioned2013-06-18T18:32:11Z
dc.date.available2014-08-01T19:11:30Zen_US
dc.date.issued2013-06-15en_US
dc.identifier.citationZimmerman, Paul M. (2013). "Automated discovery of chemically reasonable elementary reaction steps." Journal of Computational Chemistry 34(16): 1385-1392. <http://hdl.handle.net/2027.42/98143>en_US
dc.identifier.issn0192-8651en_US
dc.identifier.issn1096-987Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98143
dc.publisherWileyen_US
dc.subject.otherTransition Stateen_US
dc.subject.otherChemical Mechanismen_US
dc.subject.otherDouble‐Ended String Methodsen_US
dc.subject.otherChemical Automationen_US
dc.subject.otherReaction Simulationen_US
dc.subject.otherElementary Reactionsen_US
dc.titleAutomated discovery of chemically reasonable elementary reaction stepsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23508333en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98143/1/jcc23271.pdf
dc.identifier.doi10.1002/jcc.23271en_US
dc.identifier.sourceJournal of Computational Chemistryen_US
dc.identifier.citedreferenceN. Foloppe, A. D. Mackerell, J. Comput. Chem. 2000, 21, 86.en_US
dc.identifier.citedreferenceB. C. Gates, Catalytic Chemistry; Wiley: New York, 1992.en_US
dc.identifier.citedreferenceJ. E. Sutton, D. G. Vlachos, ACS Catal. 2012, 2, 1624.en_US
dc.identifier.citedreferenceV. Pallassana, M. Neurock, J. Catal. 2000, 191, 301.en_US
dc.identifier.citedreferenceJ. M. Bofill, J. M. Anglada, Theor. Chem. Acc. 2001, 105, 463.en_US
dc.identifier.citedreferenceY. Sugita, Y. Okamoto, Chem. Phys. Lett. 1999, 314, 141.en_US
dc.identifier.citedreferenceC. Dellago, P. G. Bolhuis, Adv. Polym. Sci. 2011, 1.en_US
dc.identifier.citedreferenceP. G. Bolhuis, D. Chandler, C. Dellago, P. L. Geissler, Annu. Rev. Phys. Chem. 2002, 53, 291.en_US
dc.identifier.citedreferenceA. D. Becke, Phys. Rev. A 1998, 38, 3098.en_US
dc.identifier.citedreferenceC. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.en_US
dc.identifier.citedreferenceA. D. Becke, J. Chem. Phys. 1993, 98, 5648.en_US
dc.identifier.citedreferenceY. Shao, L. Fusti‐Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O'Neill, R. A. Distasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.‐P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill, M. Head‐Gordon, Phys. Chem. Chem. Phys. 2006, 8, 3172.en_US
dc.identifier.citedreferenceT. S. Chambers, G. B. Kistiakowsky, J. Am. Chem. Soc. 1934, 56, 399.en_US
dc.identifier.citedreferenceH. F. Bettinger, J. C. Rienstra‐Kiracofe, B. C. Hoffman, H. F. Schaefer, J. E. Baldwin, P. v. R. Schleyer, Chem. Commun. 1999, 1999, 1515.en_US
dc.identifier.citedreferenceO. Diels, L. Alder, Liebigs Ann. Chem. 1928, 460, 98.en_US
dc.identifier.citedreferenceL. F. Tietze, G. Kettschau, Top. Curr. Chem. 1997, 189, 1.en_US
dc.identifier.citedreferenceE. D. Glendening, C. R. Landis, F. Weinhold, WIREs Comput. Mol. Sci. 2012, 2, 1.en_US
dc.identifier.citedreferenceR. A. Yoder, J. N. Johnston, Chem. Rev. 2005, 105, 4730.en_US
dc.identifier.citedreferenceI. Vilotijevic, T. F. Jamison, Science 2007, 317, 1189.en_US
dc.identifier.citedreferenceP. M. Zimmerman, M. Head‐Gordon, A. T. Bell, J. Chem. Theory Comput. 2011, 7, 1695.en_US
dc.identifier.citedreferenceH. Lin, D. G. Truhlar, Theor. Chem. Acc. 2007, 117, 185.en_US
dc.identifier.citedreferenceD. Bakowies, W. Thiel, J. Phys. Chem. 1996, 100, 10580.en_US
dc.identifier.citedreferenceA. H. de Vries, P. Sherwood, S. J. Collins, A. M. Rigby, M. Rigutto, G. J. Kramer, J. Phys. Chem. B 1999, 103, 6133.en_US
dc.identifier.citedreferenceA. T. Ziegler, Chem. Rev. 1991, 91, 651.en_US
dc.identifier.citedreferenceW. Kohn, A. D. Becke, R. G. Parr, J. Phys. Chem. 1996, 100, 12974.en_US
dc.identifier.citedreferenceR. G. Parr, W. Yang, J. Am. Chem. Soc. 1984, 106, 4049.en_US
dc.identifier.citedreferenceY. Zhao, D. G. Truhlar, J. Chem. Theor. Comput. 2005, 1, 415.en_US
dc.identifier.citedreferenceC. J. Cramer, D. G. Truhlar, Phys. Chem. Chem. Phys. 2009, 11, 10757.en_US
dc.identifier.citedreferenceA. T. Bell, M. Head‐Gordon, Annu. Rev. Chem. Biomol. Eng. 2011, 2, 453.en_US
dc.identifier.citedreferenceF. J. Keil, Top. Curr. Chem. 2012, 307, 69.en_US
dc.identifier.citedreferenceM. Laio, M. Parrinello, Proc. Natl. Acad. Sci. USA 2002, 99, 12562.en_US
dc.identifier.citedreferenceM. Ianuzzi, A. Laio, M. Parrinello, Phys. Rev. Lett. 2003, 90, 238302.en_US
dc.identifier.citedreferenceB. Ensing, M. de Vivo, Z. Liu, P. Moore, M. L. Klein, Acc. Chem. Res. 2006, 39, 73.en_US
dc.identifier.citedreferenceE. M. Mueller, A. de Meijere, H. Grubmueller, J. Chem. Phys. 2002, 116, 897.en_US
dc.identifier.citedreferenceM. Chen, M. A. Cuendet, M. E. Tuckerman, J. Chem. Phys. 2012, 137, 24102.en_US
dc.identifier.citedreferenceC. J. Cerjan, W. H. Miller, J. Chem. Phys. 1981, 75, 2800.en_US
dc.identifier.citedreferenceJ. Simons, P. Jorgensen, H. Taylor, J. Ozment, J. Phys. Chem. 1983, 87, 2745.en_US
dc.identifier.citedreferenceE. Cance, F. Legoll, M. C. Marinica, K. Minoukadeh, F. Willaime, J. Chem. Phys. 2009, 130, 114711.en_US
dc.identifier.citedreferenceD. Poppinger, Chem. Phys. Lett. 1975, 35, 550.en_US
dc.identifier.citedreferenceB. Peters, W.‐Z. Liang, A. T. Bell, A. Chakraborty, J. Chem. Phys. 2003, 118, 9533.en_US
dc.identifier.citedreferenceS. Maeda, K. Ohno, K. Morokuma, J. Chem. Theory Comput. 2009, 5, 2743.en_US
dc.identifier.citedreferenceS. Maeda, K. Morokuma, J. Chem. Theor. Comput. 2011, 7, 2335.en_US
dc.identifier.citedreferenceS. Maeda, E. Abe, M. Hatanka, T. Taketsugu, K. Morokuma, J. Chem. Theor. Comput. 2012, 8, 5058. DOI: 10.1021/ct300633e.en_US
dc.identifier.citedreferenceR. Granot, R. A. Baer, J. Chem. Phys. 2008, 128, 184111.en_US
dc.identifier.citedreferenceS. A. Ghasemi, S. Goedecker, J. Chem. Phys. 2011, 135, 014108.en_US
dc.identifier.citedreferenceH. Chaffey‐Millar, A. Nikodem, A. V. Matveev, S. Krüger, N. Rösch, J. Chem. Theory Comput. 2012, 8, 777.en_US
dc.identifier.citedreferenceH. B. Schlegel, J. Comput. Chem. 1982, 3, 214.en_US
dc.identifier.citedreferenceG. Henkelman, H. Jonsson, J. Chem. Phys. 1999, 111, 7010.en_US
dc.identifier.citedreferenceA. Heyden, A. T. Bell, F. J. Keil, J. Chem. Phys. 2005, 123, 224101.en_US
dc.identifier.citedreferenceJ. Baker, J. Comput. Chem. 1986, 7, 385.en_US
dc.identifier.citedreferenceD. J. Wales, J. Chem. Soc., Faraday Trans. 1992, 88, 653.en_US
dc.identifier.citedreferenceP. Y. Ayala, H. B. Schlegel, J. Chem. Phys. 1997, 107, 375.en_US
dc.identifier.citedreferenceJ. M. del Campo, A. M. Koster, J. Chem. Phys. 2008, 129, 024107.en_US
dc.identifier.citedreferenceH. B. Schlegel, WIREs Comput. Mol. Sci. 2011, 1, 790.en_US
dc.identifier.citedreferenceH. B. Schlegel, J. Comput. Chem. 2003, 24, 1514.en_US
dc.identifier.citedreferenceJ. Baker, A. Kessi, B. Delley, J. Chem. Phys. 1996, 105, 192.en_US
dc.identifier.citedreferenceC. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, J. Comput. Chem. 1996, 17, 49.en_US
dc.identifier.citedreferenceC. Peng, H. B. Schlegel, Isr. J. Chem. 1994, 33, 449.en_US
dc.identifier.citedreferenceG. Mills, H. Jónsson, Phys. Rev. Lett. 1994, 72, 1124.en_US
dc.identifier.citedreferenceG. Henkelman, H. Jonsson, J. Chem. Phys. 2000, 113, 9978.en_US
dc.identifier.citedreferenceG. Henkelman, B. P. Uberuaga, H. Jonsson, J. Chem. Phys. 2000, 113, 9901.en_US
dc.identifier.citedreferenceS. A. Trygubenko, D. J. Wales, J. Chem. Phys. 2004, 120, 2082.en_US
dc.identifier.citedreferenceJ. Chu, B. Trout, B. A. Brooks, J. Chem. Phys. 2003, 119, 12708.en_US
dc.identifier.citedreferenceD. Sheppard, R. Terrell, G. Henkelman, J. Chem. Phys. 2008, 128, 134106.en_US
dc.identifier.citedreferenceW. E, W. Ren, E. Vanden‐Eijnden, Phys. Rev. B 2002, 66, 052301.en_US
dc.identifier.citedreferenceW. E, W. Ren, E. Vanden‐Eijnden, J. Phys. Chem. B 2005, 109, 6688.en_US
dc.identifier.citedreferenceW. Ren, E. Vanden‐Eijnden, J. Chem. Phys. 2007, 126, 164103.en_US
dc.identifier.citedreferenceS. K. Burger, W. Yang, J. Chem. Phys. 2006, 24, 054109.en_US
dc.identifier.citedreferenceS. K. Burger, W. Yang, J. Chem. Phys. 2007, 127, 164107.en_US
dc.identifier.citedreferenceS. M. Sharada, P. M. Zimmerman, A. T. Bell, M. Head‐Gordon, J. Chem. Theor. Comput. 2012, 8, 5166.en_US
dc.identifier.citedreferenceB. Peters, A. Heyden, A. T. Bell, A. Chakraborty, J. Chem. Phys. 2004, 120, 7877.en_US
dc.identifier.citedreferenceA. Behn, P. M. Zimmerman, A. T. Bell, M. Head‐Gordon, J. Chem. Theor. Comput. 2011, 7, 4019.en_US
dc.identifier.citedreferenceW. A. Quapp, J. Chem. Phys. 2005, 122, 174106.en_US
dc.identifier.citedreferenceA. Behn, P. M. Zimmerman, A. T. Bell, M. Head‐Gordon, J. Chem. Phys. 2011, 135, 224108.en_US
dc.identifier.citedreferenceM. H. Todd, Chem. Soc. Rev. 2005, 34, 247.en_US
dc.identifier.citedreferenceJ. H. Chen, P. Baldi, J. Chem. Ed. 2008, 85, 1699.en_US
dc.identifier.citedreferenceJ. H. Chen, P. Baldi, J. Chem. Inf. Model. 2009, 49, 2034.en_US
dc.identifier.citedreferenceM. A. Kayala, C.‐A. Azencott, J. A. Chen, P. Baldi, J. Chem. Inf. Model. 2001, 51, 2209.en_US
dc.identifier.citedreferenceM. A. Kayala, P. Baldi, J. Chem. Inf. Model. 2012, 52, 2526.en_US
dc.identifier.citedreferenceR. Vinu, L. J. Broadbelt, Ann. Rev. Biomol. Eng. 2012, 3, 29.en_US
dc.identifier.citedreferenceS. S. Khan, Q. Zhang, L. J. Broadbelt, J. Atmos. Chem. 2009, 63, 125.en_US
dc.identifier.citedreferenceS. S. Khan, L. J. Broadbelt, J. Atmos. Chem. 2009, 63, 157.en_US
dc.identifier.citedreferenceT. M. Kruse, O. S. Woo, H.‐W. Wong, S. S. Khan, L. J. Broadbelt, Macromolecules 2002, 35, 7830.en_US
dc.identifier.citedreferenceL. P. Hillewart, J. L. Dierickx, G. F. Froment, AIChE J. 1988, 34, 17.en_US
dc.identifier.citedreferenceR. Sumathi, W. H. Green, Theor. Chem. Acc. 2002, 108, 187.en_US
dc.identifier.citedreferenceV. Bakken, T. Helgaker, J. Chem. Phys. 2002, 117, 9160.en_US
dc.identifier.citedreferenceD. Yin, A. D. Mackerell, J. Comput. Chem. 1998, 19, 334.en_US
dc.identifier.citedreferenceK. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A. D. Mackerell, J. Comput. Chem. 2009, 31, 671.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.