Show simple item record

Nucleus accumbens GABA ergic inhibition generates intense eating and fear that resists environmental retuning and needs no local dopamine

dc.contributor.authorRichard, Jocelyn M.en_US
dc.contributor.authorPlawecki, Andrea M.en_US
dc.contributor.authorBerridge, Kent C.en_US
dc.date.accessioned2013-06-18T18:32:19Z
dc.date.available2014-08-01T19:11:31Zen_US
dc.date.issued2013-06en_US
dc.identifier.citationRichard, Jocelyn M.; Plawecki, Andrea M.; Berridge, Kent C. (2013). "Nucleus accumbens GABA ergic inhibition generates intense eating and fear that resists environmental retuning and needs no local dopamine." European Journal of Neuroscience 37(11): 1789-1802. <http://hdl.handle.net/2027.42/98169>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98169
dc.description.abstractIntense fearful behavior and/or intense appetitive eating behavior can be generated by localized amino acid inhibitions along a rostrocaudal anatomical gradient within medial shell of nucleus accumbens of the rat. This can be produced by microinjections in medial shell of either the γ‐aminobutyric acid ( GABA ) A agonist muscimol (mimicking intrinsic GABA ergic inputs) or the AMPA (α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid) antagonist DNQX (6,7‐dinitroquinoxaline‐2,3‐dione), disrupting corticolimbic glutamate inputs). At rostral sites in medial shell, each drug robustly stimulates appetitive eating and food intake, whereas at more caudal sites the same drugs instead produce increasingly fearful behaviors such as escape, distress vocalizations and defensive treading (an antipredator behavior rodents emit to snakes and scorpions). Previously we showed that intense motivated behaviors generated by glutamate blockade require local endogenous dopamine and can be modulated in valence by environmental ambience. Here we investigated whether GABA ergic generation of intense appetitive and fearful motivations similarly depends on local dopamine signals, and whether the valence of motivations generated by GABA ergic inhibition can also be retuned by changes in environmental ambience. We report that the answer to both questions is ‘no’. Eating and fear generated by GABA ergic inhibition of accumbens shell does not need endogenous dopamine. Also, the appetitive/fearful valence generated by GABA ergic muscimol microinjections resists environmental retuning and is determined almost purely by rostrocaudal anatomical placement. These results suggest that nucleus accumbens GABA ergic release of fear and eating are relatively independent of modulatory dopamine signals, and more anatomically pre‐determined in valence balance than release of the same intense behaviors by glutamate disruptions. We investigated whether eating or fear generated by GABA inhibition of accumbens shell depend on local dopamine, and whether the valence of these behaviors can be retuned by changes in environmental ambience, similarly to glutamate blockade. We report that the answer to both questions is ‘no’. These results suggest that GABA‐induced motivated behaviors are both independent of modulatory dopamine signals and more anatomically pre‐determined than the same behaviors elicited by glutamate blockade.en_US
dc.publisherAcademic Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherGABAen_US
dc.subject.otherGlutamateen_US
dc.subject.otherRaten_US
dc.subject.otherFearen_US
dc.subject.otherEatingen_US
dc.subject.otherAccumbens Shellen_US
dc.titleNucleus accumbens GABA ergic inhibition generates intense eating and fear that resists environmental retuning and needs no local dopamineen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23551138en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98169/1/ejn12194.pdf
dc.identifier.doi10.1111/ejn.12194en_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceRichard, J.M. & Berridge, K.C. ( 2011 ) Nucleus accumbens dopamine/glutamate interaction switches modes to generate desire versus dread: D(1) alone for appetitive eating but D(1) and D(2) together for fear. J. Neurosci., 31, 12866 – 12879.en_US
dc.identifier.citedreferenceReynolds, S.M. & Berridge, K.C. ( 2003 ) Glutamate motivational ensembles in nucleus accumbens: rostrocaudal shell gradients of fear and feeding. Eur. J. Neurosci., 17, 2187 – 2200.en_US
dc.identifier.citedreferenceReynolds, S.M. & Berridge, K.C. ( 2008 ) Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens. Nat. Neurosci., 11, 423 – 425.en_US
dc.identifier.citedreferenceRichard, J.M. & Berridge, K.C. ( 2013 ) Prefrontal cortex modulates desire and dread generated by nucleus accumbens glutamate disruption. Biol. Psychiat., 73, 360 – 370.en_US
dc.identifier.citedreferenceRoitman, M.F., Wheeler, R.A., Wightman, R.M. & Carelli, R.M. ( 2008 ) Real‐time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli. Nat. Neurosci., 11, 1376 – 1377.en_US
dc.identifier.citedreferenceRussell, J.A. ( 2003 ) Core affect and the psychological construction of emotion. Psychol. Rev., 110, 145 – 172.en_US
dc.identifier.citedreferenceSesack, S.R. & Pickel, V.M. ( 1992 ) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J. Comp. Neurol., 320, 145 – 160.en_US
dc.identifier.citedreferenceStratford, T.R. & Kelley, A.E. ( 1997 ) GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. J. Neurosci., 17, 4434 – 4440.en_US
dc.identifier.citedreferenceSun, N. & Cassell, M.D. ( 1993 ) Intrinsic GABAergic neurons in the rat central extended amygdala. J. Comp. Neurol., 330, 381 – 404.en_US
dc.identifier.citedreferenceSuwabe, T., Fukami, H. & Bradley, R.M. ( 2008 ) Synaptic responses of neurons controlling the parotid and von Ebner salivary glands in rats to stimulation of the solitary nucleus and tract. J. Neurophysiol., 99, 1267 – 1273.en_US
dc.identifier.citedreferenceTaber, M.T. & Fibiger, H.C. ( 1997 ) Feeding‐evoked dopamine release in the nucleus, accumbens: regulation by glutamatergic mechanisms. Neuroscience, 76, 1105 – 1112.en_US
dc.identifier.citedreferenceTecuapetla, F., Carrillo‐Reid, L., Bargas, J. & Galarraga, E. ( 2007 ) Dopaminergic modulation of short‐term synaptic plasticity at striatal inhibitory synapses. Proc. Natl. Acad. Sci. USA, 104, 10258 – 10263.en_US
dc.identifier.citedreferenceTecuapetla, F., Patel, J.C., Xenias, H., English, D., Tadros, I., Shah, F., Berlin, J., Deisseroth, K., Rice, M.E., Tepper, J.M. & Koos, T. ( 2010 ) Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J. Neurosci., 30, 7105 – 7110.en_US
dc.identifier.citedreferenceThompson, R.H. & Swanson, L.W. ( 2010 ) Hypothesis‐driven structural connectivity analysis supports network over hierarchical model of brain architecture. Proc. Natl. Acad. Sci. USA, 107, 15235 – 15239.en_US
dc.identifier.citedreferenceTowers, S.K. & Hestrin, S. ( 2008 ) D1‐like dopamine receptor activation modulates GABAergic inhibition but not electrical coupling between neocortical fast‐spiking interneurons. J. Neurosci., 28, 2633 – 2641.en_US
dc.identifier.citedreferenceTreit, D., Pinel, J.P. & Fibiger, H.C. ( 1981 ) Conditioned defensive burying: a new paradigm for the study of anxiolytic agents. Pharmacol. Biochem. Be., 15, 619 – 626.en_US
dc.identifier.citedreferenceUsuda, I., Tanaka, K. & Chiba, T. ( 1998 ) Efferent projections of the nucleus accumbens in the rat with special reference to subdivision of the nucleus: biotinylated dextran amine study. Brain Res., 797, 73 – 93.en_US
dc.identifier.citedreferenceVanbockstaele, E.J. & Pickel, V.M. ( 1995 ) GABA‐containing neurons in the ventral tegmental area project to the nucleus‐accumbens in rat brain. Brain Res., 682, 215 – 221.en_US
dc.identifier.citedreferenceWatson, D. & Naragon‐Gainey, K. ( 2010 ) On the specificity of positive emotional dysfunction in psychopathology: evidence from the mood and anxiety disorders and schizophrenia/schizotypy. Clin. Psychol. Rev., 30, 839 – 848.en_US
dc.identifier.citedreferenceWu, N., Cepeda, C., Zhuang, X. & Levine, M.S. ( 2007 ) Altered corticostriatal neurotransmission and modulation in dopamine transporter knock‐down mice. J. Neurophysiol., 98, 423 – 432.en_US
dc.identifier.citedreferenceZahm, D.S. & Heimer, L. ( 1990 ) Two transpallidal pathways originating in the rat nucleus accumbens. J. Comp. Neurol., 302, 437 – 446.en_US
dc.identifier.citedreferenceZahm, D.S. & Heimer, L. ( 1993 ) Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell. J. Comp. Neurol., 327, 220 – 232.en_US
dc.identifier.citedreferenceZahm, D.S., Parsley, K.P., Schwartz, Z.M. & Cheng, A.Y. ( 2013 ) On lateral septum‐like characteristics of outputs from the accumbal hedonic ‘hotspot’ of Peciña and Berridge with commentary on the trasitional nature of basal forebrain ‘boundaries’. J. Comp. Neurol., 521, 50 – 68.en_US
dc.identifier.citedreferenceAldridge, J.W., Berridge, K.C., Herman, M. & Zimmer, L. ( 1993 ) Neuronal coding of serial order: syntax of grooming in the neostriatum. Psychol. Sci., 4, 391 – 395.en_US
dc.identifier.citedreferenceBarrett, L.F., Mesquita, B., Ochsner, K.N. & Gross, J.J. ( 2007 ) The experience of emotion. Annu. Rev. Psychol., 58, 373 – 403.en_US
dc.identifier.citedreferenceBeauregard, M., Levesque, J. & Bourgouin, P. ( 2001 ) Neural correlates of conscious self‐regulation of emotion. J. Neurosci., 21, U11 – U16.en_US
dc.identifier.citedreferenceBeckstead, R.M. ( 1979 ) Autoradiographic examination of cortico‐cortical and sub‐cortical projections of the mediodorsal‐projection (prefrontal) cortex in the rat. J. Comp. Neurol., 184, 43 – 62.en_US
dc.identifier.citedreferenceBehrends, J.C., Lambert, J.D.C. & Jensen, K. ( 2002 ) Repetitive activation of postsynaptic GABA(A) receptors by rapid, focal agonist application onto intact rat striatal neurones in vitro. Pflugers Arch., 443, 707 – 712.en_US
dc.identifier.citedreferenceBerridge, K.C. & Robinson, T.E. ( 1998 ) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Rev., 28, 309 – 369.en_US
dc.identifier.citedreferenceBracci, E., Centonze, D., Bernardi, G. & Calabresi, P. ( 2002 ) Dopamine excites fast‐spiking interneurons in the striatum. J. Neurophysiol., 87, 2190 – 2194.en_US
dc.identifier.citedreferenceBrady, A.M. & O'Donnell, P. ( 2004 ) Dopaminergic modulation of prefrontal cortical input to nucleus accumbens neurons in vivo. J. Neurosci., 24, 1040 – 1049.en_US
dc.identifier.citedreferenceBrog, J.S., Salyapongse, A., Deutch, A.Y. & Zahm, D.S. ( 1993 ) The patterns of afferent innervation of the core and shell in the ‘accumbens’ part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro‐gold. J. Comp. Neurol., 338, 255 – 278.en_US
dc.identifier.citedreferenceCalabresi, P., Pisani, A., Centonze, D. & Bernardi, G. ( 1997 ) Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum. Neurosci. Biobehav. R., 21, 519 – 523.en_US
dc.identifier.citedreferenceCentonze, D., Picconi, B., Baunez, C., Borrelli, E., Pisani, A., Bernardi, G. & Calabresi, P. ( 2002 ) Cocaine and amphetamine depress striatal GABAergic synaptic transmission through D2 dopamine receptors. Neuropsychopharmacol., 26, 164 – 175.en_US
dc.identifier.citedreferenceCepeda, C., Buchwald, N.A. & Levine, M.S. ( 1993 ) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc. Natl. Acad. Sci. USA, 90, 9576 – 9580.en_US
dc.identifier.citedreferenceChen, Q., Veenman, L., Knopp, K., Yan, Z., Medina, L., Song, W.J., Surmeier, D.J. & Reiner, A. ( 1998 ) Evidence for the preferential localization of glutamate receptor‐1 subunits of AMPA receptors to the dendritic spines of medium spiny neurons in rat striatum. Neuroscience, 83, 749 – 761.en_US
dc.identifier.citedreferenceChristie, M.J., Summers, R.J., Stephenson, J.A., Cook, C.J. & Beart, P.M. ( 1987 ) Excitatory amino‐acid projections to the nucleus accumbens‐septi in the rat: a retrograde transport study utilizing D[H‐3] aspartate and [H‐3] GABA. Neuroscience, 22, 425 – 439.en_US
dc.identifier.citedreferenceChurchill, L. & Kalivas, P.W. ( 1994 ) A topographically organized gamma‐aminobutyric acid projection from the ventral pallidum to the nucleus accumbens in the rat. J. Comp. Neurol., 345, 579 – 595.en_US
dc.identifier.citedreferenceCoss, R.G. & Owings, D.H. ( 1978 ) Snake‐directed behavior by snake naive and experienced California ground squirrels in a simulated burrow. Z. Tierpsychol., 48, 421 – 435.en_US
dc.identifier.citedreferenceDavidson, R.J. ( 2004 ) Well‐being and affective style: neural substrates and biobehavioural correlates. Philos. T. Roy. Soc. B, 359, 1395 – 1411.en_US
dc.identifier.citedreferenceDragunow, M. & Faull, R. ( 1989 ) The use of c‐fos as a metabolic marker in neuronal pathway tracing. J. Neurosci. Meth., 29, 261 – 265.en_US
dc.identifier.citedreferenceElman, I., Borsook, D. & Lukas, S.E. ( 2006 ) Food intake and reward mechanisms in patients with schizophrenia: implications for metabolic disturbances and treatment with second‐generation antipsychotic agents. Neuropsychopharmacol., 31, 2091 – 2120.en_US
dc.identifier.citedreferenceFaure, A., Reynolds, S.M., Richard, J.M. & Berridge, K.C. ( 2008 ) Mesolimbic dopamine in desire and dread: enabling motivation to be generated by localized glutamate disruptions in nucleus accumbens. J. Neurosci., 28, 7184 – 7192.en_US
dc.identifier.citedreferenceFaure, A., Richard, J.M. & Berridge, K.C. ( 2010 ) Desire and dread from the nucleus accumbens: cortical glutamate and subcortical GABA differentially generate motivation and hedonic impact in the rat. PLoS ONE, 5, e11223.en_US
dc.identifier.citedreferenceFeatherstone, R.E., Kapur, S. & Fletcher, P.J. ( 2007 ) The amphetamine‐induced sensitized state as a model of schizophrenia. Prog. Neuro‐Psychoph., 31, 1556 – 1571.en_US
dc.identifier.citedreferenceFuller, T.A., Russchen, F.T. & Price, J.L. ( 1987 ) Sources of presumptive glutamatergic aspartergic afferents to the rat ventral striatopallidal region. J. Comp. Neurol., 258, 317 – 338.en_US
dc.identifier.citedreferenceGoetz, T., Arslan, A., Wisden, W. & Wulff, P. ( 2007 ) GABA(A) receptors: structure and function in the basal ganglia. Prog. Brain Res., 160, 21 – 41.en_US
dc.identifier.citedreferenceGoldin, P.R., McRae, K., Ramel, W. & Gross, J.J. ( 2008 ) The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biol. Psychiat., 63, 577 – 586.en_US
dc.identifier.citedreferenceHeimer, L., Zahm, D.S., Churchill, L., Kalivas, P.W. & Wohltmann, C. ( 1991 ) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience, 41, 89 – 125.en_US
dc.identifier.citedreferenceHowes, O.D. & Kapur, S. ( 2009 ) The dopamine hypothesis of schizophrenia: version III–the final common pathway. Schizophrenia Bull., 35, 549 – 562.en_US
dc.identifier.citedreferenceJensen, J., Willeit, M., Zipursky, R.B., Savina, I., Smith, A.J., Menon, M., Crawley, A.P. & Kapur, S. ( 2008 ) The formation of abnormal associations in schizophrenia: neural and behavioral evidence. Neuropsychopharmacol., 33, 473 – 479.en_US
dc.identifier.citedreferenceJeun, S.H., Cho, H.S., Kim, K.J., Li, Q.Z. & Sung, K.W. ( 2009 ) Electrophysiological characterization of AMPA and NMDA receptors in rat dorsal striatum. Korean J. Physiol. Pha., 13, 209 – 214.en_US
dc.identifier.citedreferenceJohnson, L.R., Aylward, R.L.M. & Totterdell, S. ( 1994 ) Synaptic organization of the amygdalar input to the nucleus‐accumbens in the rat. In Percheron, G., McKenzie, J.S. & Feger, J. (Eds) Basal Ganglia IV ‐ New Ideas and Data on Structure and Function. Plenum Press, New York, pp. 109 – 114.en_US
dc.identifier.citedreferenceKelley, A.E. ( 1999 ) Functional specificity of ventral striatal compartments in appetitive behaviors. Ann. NY Acad. Sci., 877, 71 – 90.en_US
dc.identifier.citedreferenceKelley, A.E., Bakshi, V.P., Fleming, S. & Holahan, M.R. ( 2000 ) A pharmacological analysis of the substrates underlying conditioned feeding induced by repeated opioid stimulation of the nucleus accumbens. Neuropsychopharmacol., 23, 455 – 467.en_US
dc.identifier.citedreferenceKiyatkin, E.A. & Rebec, G.V. ( 1999 ) Modulation of striatal neuronal activity by glutamate and GABA: iontophoresis in awake, unrestrained rats. Brain Res., 822, 88 – 106.en_US
dc.identifier.citedreferenceKoos, T., Tepper, J.M. & Wilson, C.J. ( 2004 ) Comparison of IPSCs evoked by spiny and fast‐spiking neurons in the neostriatum. J. Neurosci., 24, 7916 – 7922.en_US
dc.identifier.citedreferenceKrause, M., German, P.W., Taha, S.A. & Fields, H.L. ( 2010 ) A pause in nucleus accumbens neuron firing is required to initiate and maintain feeding. J. Neurosci., 30, 4746 – 4756.en_US
dc.identifier.citedreferenceMaldonado‐Irizarry, C.S., Swanson, C.J. & Kelley, A.E. ( 1995 ) Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. J. Neurosci., 15, 6779 – 6788.en_US
dc.identifier.citedreferenceMeredith, G.E. ( 1999 ) The synaptic framework for chemical signaling in nucleus accumbens. Ann. NY Acad. Sci., 877, 140 – 156.en_US
dc.identifier.citedreferenceMeredith, G.E., Wouterlood, F.G. & Pattiselanno, A. ( 1990 ) Hippocampal fibers make synaptic contacts with glutamate decarboxylase‐immunoreactive neurons in the rat nucleus accumbens. Brain Res., 513, 329 – 334.en_US
dc.identifier.citedreferenceMeredith, G.E., Pennartz, C.M. & Groenewegen, H.J. ( 1993 ) The cellular framework for chemical signalling in the nucleus accumbens. Prog. Brain Res., 99, 3 – 24.en_US
dc.identifier.citedreferenceMeredith, G.E., Baldo, B.A., Andrezjewski, M.E. & Kelley, A.E. ( 2008 ) The structural basis for mapping behavior onto the ventral striatum and its subdivisions. Brain Struct. Funct., 213, 17 – 27.en_US
dc.identifier.citedreferenceMogenson, G.J., Swanson, L.W. & Wu, M. ( 1983 ) Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic‐lateral hypothalamic area: an anatomical and electrophysiological investigation in the rat. J. Neurosci., 3, 189 – 202.en_US
dc.identifier.citedreferenceO'Donnell, P. ( 1999 ) Ensemble coding in the nucleus accumbens. Psychobiology, 27, 187 – 197.en_US
dc.identifier.citedreferencePaxinos, G. & Watson, C. ( 2007 ) The rat brain in stereotaxic coordinates. Academic Press, New York.en_US
dc.identifier.citedreferencePeciña, S., Berridge, K.C. & Parker, L.A. ( 1997 ) Pimozide does not shift palatability: separation of anhedonia from sensorimotor suppression by taste reactivity. Pharmacol. Biochem. Be., 58, 801 – 811.en_US
dc.identifier.citedreferencePeciña, S., Cagniard, B., Berridge, K.C., Aldridge, J.W. & Zhuang, X. ( 2003 ) Hyperdopaminergic mutant mice have higher ‘wanting’ but not ‘liking’ for sweet rewards. J. Neurosci., 23, 9395 – 9402.en_US
dc.identifier.citedreferencePennartz, C.M., Groenewegen, H.J. & Lopes da Silva, F.H. ( 1994 ) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog. Neurobiol., 42, 719 – 761.en_US
dc.identifier.citedreferencePosner, M.I., Rothbart, M.K., Sheese, B.E. & Tang, Y. ( 2007 ) The anterior cingulate gyrus and the mechanism of self‐regulation. Cogn. Affect. Behav. Ne., 7, 391 – 395.en_US
dc.identifier.citedreferenceReynolds, S.M. & Berridge, K.C. ( 2001 ) Fear and feeding in the nucleus accumbens shell: rostrocaudal segregation of GABA‐elicited defensive behavior versus eating behavior. J. Neurosci., 21, 3261 – 3270.en_US
dc.identifier.citedreferenceReynolds, S.M. & Berridge, K.C. ( 2002 ) Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA‐elicited eating, taste ‘liking’/’disliking’ reactions, place preference/avoidance, and fear. J. Neurosci., 22, 7308 – 7320.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.