Show simple item record

The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach

dc.contributor.authorBoynton, R. J.en_US
dc.contributor.authorBalikhin, M. A.en_US
dc.contributor.authorBillings, S. A.en_US
dc.contributor.authorReeves, G. D.en_US
dc.contributor.authorGanushkina, N.en_US
dc.contributor.authorGedalin, M.en_US
dc.contributor.authorAmariutei, O. A.en_US
dc.contributor.authorBorovsky, J. E.en_US
dc.contributor.authorWalker, S. N.en_US
dc.date.accessioned2013-06-18T18:32:35Z
dc.date.available2014-05-23T15:04:18Zen_US
dc.date.issued2013-04en_US
dc.identifier.citationBoynton, R. J.; Balikhin, M. A.; Billings, S. A.; Reeves, G. D.; Ganushkina, N.; Gedalin, M.; Amariutei, O. A.; Borovsky, J. E.; Walker, S. N. (2013). "The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach." Journal of Geophysical Research: Space Physics 118(4): 1500-1513. <http://hdl.handle.net/2027.42/98224>en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98224
dc.publisherOxford Univ. Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherElectron Fluxesen_US
dc.titleThe analysis of electron fluxes at geosynchronous orbit employing a NARMAX approachen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98224/1/jgra50192.pdf
dc.identifier.doi10.1002/jgra.50192en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceOnsager, T. G., J. C. Green, G. D. Reeves, H. J. Singer ( 2007 ), Solar wind and magnetospheric conditions leading to the abrupt loss of outer radiation belt electrons, J. Geophys. Res., 112 ( A1 ), A01,202, doi: 10.1029/2006JA011708.en_US
dc.identifier.citedreferenceOmura, Y., N. Furuya, and D. Summers ( 2007 ), Relativistic turning acceleration of resonant electrons by coherent whistler mode waves in a dipole magnetic field, J. Geophys. Res., 112 ( A6 ), A06,236, doi: 10.1029/2006JA012243.en_US
dc.identifier.citedreferenceOtto, A., and Fairfield D. H. ( 2000 ), Kelvin‐helmholtz instability at the magnetotail boundary: MHD simulation and comparison with geotail observations, J. Geophys. Res., 105 ( A9 ), 21,175 – 21,190.en_US
dc.identifier.citedreferencePaulikas, G. A., and J. B. Blake ( 1979 ), Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit, in Quantitative Modeling of Magnetospheric Processes, Geophys. Monogr. Ser., Vol.  21, aGU, Washington, D. C., 180 – 202.en_US
dc.identifier.citedreferenceQin, Z., R. E. Denton, N. A. Tsyganenko, and S. Wolf ( 2007 ), Solar wind parameters for magnetospheric magnetic field modeling, Space Weather, 5 ( 11 ), S11,003, doi: 10.1029/2006SW000296.en_US
dc.identifier.citedreferenceReeves, G. D. ( 1998 ), Relativistic electrons and magnetic storms: 1992–1995, Geophys. Res. Lett., 25 ( 11 ), 1817 – 1820.en_US
dc.identifier.citedreferenceReeves, G. D., K. L. McAdams, R. H. W. Friedel, and O'Brien T. P. ( 2003 ), Acceleration and loss of relativistic electrons during geomagnetic storms, Geophys. Res. Lett., 30 ( 10 ), 1529, doi: 10.1029/2002GL016513.en_US
dc.identifier.citedreferenceReeves, G. D., A. Chan, and C. Rodger ( 2009 ), New directions for radiation belt research, Space Weather, 7 ( 7 ), S07,004, doi: 10.1029/2008SW000436.en_US
dc.identifier.citedreferenceReeves, G. D., S. K. Morley, R. H. W. Friedel, M. G. Henderson, T. E. Cayton, G. Cunningham, J. B. Blake, R. A. Christensen, D. Thomsen ( 2011 ), On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited, J. Geophys. Res., 116 ( A2 ), A02,213, doi: 10.1029/2010JA015735.en_US
dc.identifier.citedreferenceRostoker, G., S. Skone, D. N. Baker ( 1998 ), On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms, Geophys. Res. Lett., 25 ( 19 ), 3701 – 3704.en_US
dc.identifier.citedreferenceRussell, C. T., and R. L. McPherron ( 1973 ), Semiannual variation of geomagnetic activity, J. Geophys. Res., 78 ( 1 ), 92 – 108.en_US
dc.identifier.citedreferenceSchulz, M., and L. J. Lanzerotti ( 1974 ), Particle Diffusion in the Radiation Belts, Physics and Chemistry in Space, Springer, Berlin.en_US
dc.identifier.citedreferenceSheldon, R. B., H. E. Spence, J. D. Sullivan, T. A. Fritz, J. Chen ( 1998 ), The discovery of trapped energetic electrons in the outer cusp, Geophys. Res. Lett., 25 ( 11 ), 1825 – 1828.en_US
dc.identifier.citedreferenceShprits, Y. Y., D. A. Subbotin, N. P. Meredith, and S. R. Elkington ( 2008 ), Review of modeling of losses and sources of relativistic electrons in the outer radiation belt ii: Local acceleration and loss, Journal of Atmospheric and Solar‐Terrestrial Physics, 70 ( 14 ), 1694 – 1713.en_US
dc.identifier.citedreferenceShue, J. ‐H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer ( 1997 ), A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102 ( A5 ), 9497 – 9511.en_US
dc.identifier.citedreferenceSummers, D., and R. M. Thorne ( 2003 ), Relativistic electron pitch‐angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms, J. Geophys. Res., 108 ( A4 ), 1143, doi: 10.1029/2002JA009489.en_US
dc.identifier.citedreferenceSummers, D., R. M. Thorne, and F. Xiao ( 1998 ), Relativistic theory of wave‐particle resonant diffusion with application to electron acceleration in the magnetosphere, J. Geophys. Res., 103 ( A9 ), 20,487 – 20,500.en_US
dc.identifier.citedreferenceSummers, D., C. Ma, N. P. Meredith, R. B. Horne, R. M. Thorne, D. Heynderickx, and R. R. Anderson ( 2002 ), Geophys. Res. Lett., 29 ( 24 ), 2174, doi: 10.1029/200GL016039.en_US
dc.identifier.citedreferenceSummers, D., C. Ma, N. Meredith, R. Horne, R. Thorne, and R. Anderson ( 2004 ), Modeling outer‐zone relativistic electron response to whistler‐mode chorus activity during substorms, Journal of Atmospheric and Solar‐Terrestrial Physics, 66 ( 2 ), 133 – 146.en_US
dc.identifier.citedreferenceSummers, D., B. Ni, and N. P. Meredith ( 2007 ), Timescales for radiation belt electron acceleration and loss due to resonant wave‐particle interactions: 1. Theory, J. Geophys. Res., 112 ( A4 ), A04,206, doi: 10.1029/2006JA011801.en_US
dc.identifier.citedreferenceTemerin, M., and Li X. ( 2006 ), Dst model for 1995–2002, J. Geophys. Res., 111 ( A4 ), A04,221, doi: 10.1029/2005JA011257.en_US
dc.identifier.citedreferenceTemerin, M., I. Roth, M. Hudson, J. Wygant ( 1994 ), New paradigm for the transport and energization of radiation belt particles, Eos Trans. AGU, 75, 538.en_US
dc.identifier.citedreferenceVan, A, J. A. ( 1959 ), The geomagnetically trapped corpuscular radiation, J. Geophys. Res., 64 ( 11 ), 1683 – 1689.en_US
dc.identifier.citedreferenceWei, H., S. Billings, and J. Lui ( 2004 ), Term and variable selection for nonlinear models, Int. Control J., 77, 86 – 110, doi: 10.1080/00207170310001639640.en_US
dc.identifier.citedreferenceAlbert, J. M. ( 2003 ), Evaluation of quasi‐linear diffusion coefficients for emic waves in a multispecies plasma, J. Geophys. Res., 108 ( A6 ), 1249, doi: 10.1029/2002JA009792.en_US
dc.identifier.citedreferenceAlbert, J. M. ( 2005 ), Evaluation of quasi‐linear diffusion coefficients for whistler mode waves in a plasma with arbitrary density ratio, J. Geophys. Res., 110 ( A3 ), A03,218, doi: 10.1029/2004JA010844.en_US
dc.identifier.citedreferenceBaker, D. N., P. R. Higbie, R. D. Belian, and E. W. J. Hones ( 1979 ), Do jovian electrons influence the terrestrial outer radiation zone?, Geophys. Res. Lett., 6 ( 6 ), 531 – 534.en_US
dc.identifier.citedreferenceBaker, D. N., R. L. McPherron, T. E. Cayton, and R. W. Klebesadel ( 1990 ), Linear prediction filter analysis of relativistic electron properties at 6.6 re, J. Geophys. Res., 95 ( A9 ), 15,133 – 15,140.en_US
dc.identifier.citedreferenceBalikhin, M. A., R. J. Boynton, S. A. Billings, M. Gedalin, N. Ganushkina, D. Coca, and H. Wei ( 2010 ), Data based quest for solar wind‐magnetosphere coupling function, Geophys. Res. Lett., 37 ( 24 ), L24,107, doi: 10.1029/2010GL045733.en_US
dc.identifier.citedreferenceBalikhin, M. A., R. J. Boynton, S. N. Walker, J. E. Borovsky, S. A. Billings, and H. L. Wei ( 2011 ), Using the narmax approach to model the evolution of energetic electrons fluxes at geostationary orbit, Geophys. Res. Lett., 38 ( 18 ), L18,105, doi: 10.1029/2011GLO48980.en_US
dc.identifier.citedreferenceBalikhin, M. A., M. Gedalin, G. D. Reeves, R. J. Boynton, and S. A. Billings ( 2012 ), Time scaling of the electron flux increase at geo: The local energy diffusion model vs observations, J. Geophys. Res., 117 ( A10 ), A10,208, doi: 10.1029/2012JA018114.en_US
dc.identifier.citedreferenceBillings, S., S. Chen, and M. Korenberg ( 1989 ), Identification of mimo non‐linear systems using a forward‐regression orthogonal estimator, Int. J. Control, 49 ( 6 ), 2157 – 2189.en_US
dc.identifier.citedreferenceBillings, S. A., and K. M. Tsang ( 1989 ), Spectral analysis for nonlinear systems, part i: Parametric non‐linear spectral analysis, Mech. Syst. Signal Proc., 3, 319 – 339.en_US
dc.identifier.citedreferenceBlake, J. B., W. A. Kolasinski, R. W. Fillius, and E. G. Mullen ( 1992 ), Injection of electrons and protons with energies of tens of mev into l<3 on 24 march 1991, Geophys. Res. Lett., 19 ( 8 ), 821 – 824.en_US
dc.identifier.citedreferenceBlake, J. B., D. N. Baker, N. Turner, K. W. Ogilvie, and R. P. Lepping ( 1997 ), Correlation of changes in the outer‐zone relativistic‐electron population with upstream solar wind and magnetic field measurements, Geophys. Res. Lett., 24 ( 8 ), 927 – 929.en_US
dc.identifier.citedreferenceBorovsky, J. E., M. F. Thomsen, and R. C. Elphic ( 1998 ), The driving of the plasma sheet by the solar wind, J. Geophys. Res., 103 ( A8 ), 17,617 – 17,639.en_US
dc.identifier.citedreferenceBoscher, D., S. Bourdarie, R. Thorne, and B. Abel ( 2000 ), Influence of the wave characteristics on the electron radiation belt distribution, Adv. Space Res., 26 ( 1 ), 163 – 166.en_US
dc.identifier.citedreferenceBoynton, R. J., M. A. Balikhin, S. A. Billings, A. S. Sharma, and O. A. Amariutei ( 2011a ), Data derived narmax Dst model, Annales Geophysicae, 29 ( 6 ), 965 – 971, doi: 10.5194/angeo‐29‐965‐2011.en_US
dc.identifier.citedreferenceBoynton, R. J., M. A. Balikhin, S. A. Billings, H. L. Wei, and N. Ganushkina ( 2011b ), Using the NARMAX OLS‐ERR algorithm to obtain the most influential coupling functions that affect the evolution of the magnetosphere, J. Geophys. Res., 116 ( A5 ), A05,218, doi: 10.1029/2010JA015505.en_US
dc.identifier.citedreferenceCayton, T. E, and M. Tuszewski ( 2005 ), Improved electron fluxes from the synchronous orbit particle analyzer, Space Weather, 3 ( 11 ), S11B05, doi: 10.1029/2005SW000150.en_US
dc.identifier.citedreferenceChandrasekhar, S. ( 1961 ), The stability of superposed fluids: the Kelvin‐Helmholtz instability, in Hydrodynamic and Hydromagnetic Stability, pp. 418 – 514, Oxford Univ. Press, New York.en_US
dc.identifier.citedreferenceElkington, S. R., M. K. Hudson, and A. A. Chan ( 1999 ), Acceleration of relativistic electrons via drift‐resonant interaction with toroidal‐mode pc‐5 ulf oscillations, Geophys. Res. Lett., 26 ( 21 ), 3273 – 3276.en_US
dc.identifier.citedreferenceFalthammar, C. ‐G. ( 1968 ), Radial Diffusion by Violation of the Third Adiabatic Invariant, 157, Reinhold, New York.en_US
dc.identifier.citedreferenceFriedel, R., G. Reeves, and T. Obara ( 2002 ), Relativistic electron dynamics in the inner magnetosphere – a review, J. Atmos. Sol. Terr. Phys., 64 ( 2 ), 265 – 282, doi: 10.1016/S1364‐6826(01)00088‐8.en_US
dc.identifier.citedreferenceFujimoto, M., and A. Nishida ( 1990 ), Energization and anisotropization of energetic electrons in the Earth's radiation belt by the recirculation process, J. Geophys. Res., 95 ( A4 ), 4265 – 4270.en_US
dc.identifier.citedreferenceGolikov, Y., T. Plyasova‐Bakounina, V. Troitskaya, A. Chernikov, V. Pustovalov, and P. Hedgecock ( 1980 ), Where do solar wind‐controlled micropulsations originate? Planet. and Space Sci., 28 ( 5 ), 535 – 543.en_US
dc.identifier.citedreferenceHorne, R. B., R. M. Thorne, S. A. Glauert, J. M. Albert, N. P. Meredith, and R. R. Anderson ( 2005 ), Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res., 110 ( A3 ), A03,225, doi: 10.1029/2004JA010811.en_US
dc.identifier.citedreferenceHudson, M., S. Elkington, J. Lyon, and C. Goodrich ( 2000 ), Increase in relativistic electron flux in the inner magnetosphere: Ulf wave mode structure, Advances in Space Research, 25 ( 12 ), 2327 – 2337.en_US
dc.identifier.citedreferenceHudson, M. K., S. R. Elkington, J. G. Lyon, C. C. Goodrich, and T. J. Rosenberg ( 1999 ), Simulation of radiation belt dynamics driven by solar wind variations, in Geophys. Monogr. Ser., Vol.  109, AGU, Washington, DC, 171 – 182.en_US
dc.identifier.citedreferenceHudson, M. K., S. R. Elkington, J. G. Lyon, M. Wiltberger, and M. Lessard ( 2001 ), Radiation belt electron acceleration by ULF wave drift resonance: Simulation of 1997 and 1998 storms, in Space Weather, Geophys. Monogr. Ser., 125., edited by P. Song, H. J. Singer, and G. L. Siscoe, AGU, Washington, D. C., pp. 289 – 296. doi: 10.1029/GM125p0289.en_US
dc.identifier.citedreferenceJi, E. ‐Y., Y.‐J. Moon, N. Gopalswamy, and D.‐H. Lee ( 2012 ), Comparison of dst forecast models for intense geomagnetic storms, J. Geophys. Res., 117 ( A3 ), A03,209, doi: 10.1029/2011JA016874.en_US
dc.identifier.citedreferenceKan, J. R., and L. C. Lee ( 1979 ), Energy coupling function and solar wind‐magnetosphere dynamo, Geophys. Res. Lett., 6, 577 – 580.en_US
dc.identifier.citedreferenceKataoka, R., and Y. Miyoshi ( 2006 ), Flux enhancement of radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions, Space Weather, 4 ( 9 ), S09,004, doi: 10.1029/2005SW000211.en_US
dc.identifier.citedreferenceKennel, C., and H. Petschek ( 1966 ), Limit on stably trapped particle fluxes, J. Geophys. Res., 71 ( 1 ), 1 – 28.en_US
dc.identifier.citedreferenceLeontaritis, I. J., and S. A. Billings ( 1985a ), Input‐output parametric models for non‐linear systems part i: Deterministic non‐linear systems., Int. J. Control, 41 ( 2 ), 303 – 328.en_US
dc.identifier.citedreferenceLeontaritis, I. J., and S. A. Billings ( 1985b ), Input‐output parametric models for non‐linear systems part ii: Stochastic nonlinear systems, Int. J. Control, 41 ( 2 ), 329 – 344.en_US
dc.identifier.citedreferenceLi, X. ( 2004 ), Variations of 0.7‐6.0 mev electrons at geosynchronous orbit as a function of solar wind, Space Weather, 2 ( 3 ), S03,006., doi: 10.1029/2003SW000017.en_US
dc.identifier.citedreferenceLi, X., M. Temerin, D. N. Baker, and G. D. Reeves ( 2011 ), Behavior of mev electrons at geosynchronous orbit during last two solar cycles, J. Geophys. Res., 116 ( A11 ), A11,207, doi: 10.1029/2011JA016934.en_US
dc.identifier.citedreferenceLi, X. L., M. Temerin, D. N. Baker, G. D. Reeves, and D. Larson ( 2001 ), Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements, Geophys, Res. Lett., 28 ( 9 ), 1887 – 1890.en_US
dc.identifier.citedreferenceLi, X. L., D. N. Baker, M. Temerin, G. Reeves, R. Friedel, and C. Shen ( 2005 ), Energetic electrons, 50 kev to 6 mev, at geosynchronous orbit: Their responses to solar wind variations, Space Weather, 3 ( 4 ), S04,001, doi: 10.1029/2004SW000105.en_US
dc.identifier.citedreferenceLiu, W. W., G. Rostoker, D. N. Baker ( 1999 ), Internal acceleration of relativistic electrons by large‐amplitude ulf pulsations, J. Geophys. Res., 104 ( A8 ), 17,391 – 17,407.en_US
dc.identifier.citedreferenceLoto'aniu, T. M., H. J. Singer, C. L. Waters, V. Angelopoulos, I. R. Mann, S. R. Elkington, and J. W. Bonnell ( 2010 ), Relativistic electron loss due to ultralow frequency waves and enhanced outward radial diffusion, J. Geophys. Res., 115 ( A12 ), A12,245, doi: 10.1029/2010JA015755.en_US
dc.identifier.citedreferenceLyatsky, W., and G. V. Khazanov ( 2008 ), Effect of solar wind density on relativistic electrons at geosynchronous orbit, Geophys. Res. Lett., 35 ( 3 ), L03,109, doi: 10.1029/2007GLO32524.en_US
dc.identifier.citedreferenceLyons, L. R., D.‐Y. Lee, R. M. Thorne, R. B. Horne, A. J. Smith ( 2005 ), Solar wind‐magnetosphere coupling leading to relativistic electron energization during high‐speed streams, J. Geophys. Res., 110 ( A11 ), A11,202, doi: 10.1029/2005JA011254.en_US
dc.identifier.citedreferenceMatsumura, C., Y. Miyoshi, K. Seki, S. Saito, V. Angelopoulos, and Koller J. ( 2011 ), Outer radiation belt boundary location relative to the magnetopause: Implications for magnetopause shadowing, J. Geophys. Res., 116 ( A6 ), A06,212, doi: 10.1029/2011JA016575.en_US
dc.identifier.citedreferenceMcPherron, R., D. Baker, N. Crooker ( 2009 ), Role of the russell‐mcpherron effect in the acceleration of relativistic electrons, Journal of Atmospheric and Solar‐Terrestrial Physics, 71 ( 10–11 ), 1032 – 1044, doi: 10.1016/j.jastp.2008.11.002.en_US
dc.identifier.citedreferenceMikhailovskii, A. B., and V. A. Klimenko ( 1980 ), The microinstabilities of a high β plasma flow with a non‐uniform velocity profile, Journal of Plasma Physics, 24 ( 03 ), 385 – 407.en_US
dc.identifier.citedreferenceMiyoshi, Y., and R. Kataoka ( 2008a ), Flux enhancement of the outer radiation belt electrons after the arrival of stream interaction regions, J. Geophys. Res., 113 ( A3 ), A03S09, doi: 10.1029/2007JA012506.en_US
dc.identifier.citedreferenceMiyoshi, Y., and R. Kataoka ( 2008b ), Probabilistic space weather forecast of the relativistic electron flux enhancement at geosynchronous orbit, Journal of Atmospheric and Solar‐Terrestrial Physics, 70 ( 2–4 ), 475 – 481, doi: 10.1016/j.jastp.2007.08.066.en_US
dc.identifier.citedreferenceNewell, P. T., T. Sotirelis, K. Liou, C. I. Meng, F. J. Rich ( 2007 ), A nearly universal solar wind‐magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 112, A01,206, doi: 10.1029/2006JA012015.en_US
dc.identifier.citedreferenceO'Brien, T. P., K. R. Lorentzen, I. R. Mann, N. P. Meredith, J. B. Blake, J. F. Fennell, M. D. Looper, D. K. Milling, R. R. Anderson ( 2003 ), Energization of relativistic electrons in the presence of ulf power and mev microbursts: Evidence for dual ulf and vlf acceleration, J. Geophys. Res., 108 ( A8 ), 1329, doi: 10.1029/2002JA009784.en_US
dc.identifier.citedreferenceOhtani, S., Y. Miyoshi, H. J. Singer, and J. M. Weygand ( 2009 ), J. Geophys. Res., 114 ( A1 ), A01,202, doi: 10.1029/2008JA013391.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.