Show simple item record

Estimating epistemic and aleatory uncertainties during hydrologic modeling: An information theoretic approach

dc.contributor.authorGong, Weien_US
dc.contributor.authorGupta, Hoshin V.en_US
dc.contributor.authorYang, Dawenen_US
dc.contributor.authorSricharan, Kumaren_US
dc.contributor.authorHero, Alfred O.en_US
dc.date.accessioned2013-06-18T18:32:40Z
dc.date.available2014-05-23T15:04:18Zen_US
dc.date.issued2013-04en_US
dc.identifier.citationGong, Wei; Gupta, Hoshin V.; Yang, Dawen; Sricharan, Kumar; Hero, Alfred O. (2013). "Estimating epistemic and aleatory uncertainties during hydrologic modeling: An information theoretic approach." Water Resources Research 49(4): 2253-2273. <http://hdl.handle.net/2027.42/98239>en_US
dc.identifier.issn0043-1397en_US
dc.identifier.issn1944-7973en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98239
dc.publisherPrinceton University Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherUncertainty Analysisen_US
dc.subject.otherEntropyen_US
dc.subject.otherModel Structure Adequacyen_US
dc.subject.otherInformation Theoryen_US
dc.subject.otherMutual Informationen_US
dc.titleEstimating epistemic and aleatory uncertainties during hydrologic modeling: An information theoretic approachen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98239/1/wrcr20161.pdf
dc.identifier.doi10.1002/wrcr.20161en_US
dc.identifier.sourceWater Resources Researchen_US
dc.identifier.citedreferenceYoung, P. C., P. Mckenna, and J. Bruun ( 2001 ), Identification of non‐linear stochastic systems by state dependent parameter estimation, Int. J. Contr., 74 ( 18 ), 1837 – 1857, doi: 10.1080/00207170110089824.en_US
dc.identifier.citedreferenceReichert, P., and J. Mieleitner ( 2009 ), Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time‐dependent parameters, Water Resour. Res., 45, W10402, doi: 10.1029/2009WR007814.en_US
dc.identifier.citedreferenceRuddell, B. L., and P. Kumar ( 2009 ), Ecohydrologic process networks: 1. Identification, Water Resour. Res., 45, W03419, doi: 10.1029/2008WR007279.en_US
dc.identifier.citedreferenceScott, D. W. ( 2004 ), Handbook of Computational Statistics—Concepts and Methods, Springer, New York.en_US
dc.identifier.citedreferenceSeo, D. J., H. D. Herr, and J. C. Schaake ( 2006 ), A statistical post‐processor for accounting of hydrologic uncertainty in short‐range ensemble streamflow prediction, Hydrol. Earth Syst. Sci. Discuss., 3 ( 4 ), 1987 – 2035.en_US
dc.identifier.citedreferenceShannon, C. E. ( 1948 ), A mathemetical theory of communication, The Bell System Technical Journal, 27, 379 – 423, 623–656.en_US
dc.identifier.citedreferenceSharma, A. ( 2000 ), Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1—A strategy for system predictor identification, J. Hydrol., 239 ( 1–4 ), 232 – 239, doi: 10.1016/S0022‐1694(00)00346‐2.en_US
dc.identifier.citedreferenceSingh, V. P. ( 1997 ), The use of entropy in hydrology and water resources, Hydrol. Process., 11 ( 6 ), 587 – 626, doi: 10.1002/(SICI)1099‐1085(199705)11:6<587::AID‐HYP479>3.3.CO;2‐G.en_US
dc.identifier.citedreferenceSingh, V. P. ( 2000 ), The entropy theory as a tool for modelling and decision‐making in environmental and water resources, Water SA, 26 ( 1 ), 1 – 11.en_US
dc.identifier.citedreferenceSivapalan, M., et al. ( 2003 ), IAHS decade on predictions in ungauged basins (Pub), 2003–2012: Shaping an exciting future for the hydrological sciences, Hydrol. Sci. J., 48 ( 6 ), 857 – 880, doi: 10.1623/hysj.48.6.857.51421.en_US
dc.identifier.citedreferenceSorooshian, S., and J. A. Dracup ( 1980 ), Stochastic parameter‐estimation procedures for hydrologic rainfall‐runoff models—Correlated and heteroscedastic error cases, Water Resour. Res., 16 ( 2 ), 430 – 442, doi: 10.1029/WR016i002p00430.en_US
dc.identifier.citedreferenceSorooshian, S., Q. Y. Duan, and V. K. Gupta ( 1993 ), Calibration of rainfall‐runoff models—Application of global optimization to the Sacramento soil‐moisture accounting model, Water Resour. Res., 29 ( 4 ), 1185 – 1194, doi: 10.1029/92WR02617.en_US
dc.identifier.citedreferenceThiemann, M., M. Trosset, H. Gupta, and S. Sorooshian ( 2001 ), Bayesian recursive parameter estimation for hydrologic models, Water Resour. Res., 37 ( 10 ), 2521 – 2535, doi: 10.1029/2000WR900405.en_US
dc.identifier.citedreferenceVrugt, J. A., H. V. Gupta, W. Bouten, and S. Sorooshian ( 2003 ), A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39 ( 8 ), 1201, doi: 10.1029/2002WR001642.en_US
dc.identifier.citedreferenceVrugt, J. A., C. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten ( 2005 ), Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation, Water Resour. Res., 41, W01017, doi: 10.1029/2004WR003059.en_US
dc.identifier.citedreferenceVrugt, J. A., C. ter Braak, M. P. Clark, J. M. Hyman, and B. A. Robinson ( 2008 ), Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation, Water Resour. Res., 44, W00B09, doi: 10.1029/2007WR006720.en_US
dc.identifier.citedreferenceWagener, T., D. P. Boyle, M. J. Lees, H. S. Wheater, H. V. Gupta, and S. Sorooshian ( 2001 ), A framework for development and application of hydrological models, Hydrol. Earth Syst. Sci., 5 ( 1 ), 13 – 26.en_US
dc.identifier.citedreferenceWagener, T., N. Mcintyre, M. J. Lees, H. S. Wheater, and H. V. Gupta ( 2003 ), Towards reduced uncertainty in conceptual rainfall‐runoff modelling: Dynamic identifiability analysis, Hydrol. Process., 17 ( 2 ), 455 – 476, doi: 10.1002/hyp.1135.en_US
dc.identifier.citedreferenceWeijs, S. V., and N. van de Giesen ( 2011 ), Accounting for observational uncertainty in forecast verification: An information‐theoretical view on forecasts, observations, and truth B‐5010‐2008, Mon. Weather Rev., 139 ( 7 ), 2156 – 2162, doi: 10.1175/2011MWR3573.1.en_US
dc.identifier.citedreferenceWeijs, S. V., G. Schoups, and N. van de Giesen ( 2010a ), Why hydrological predictions should be evaluated using information theory, Hydrol. Earth Syst. Sci., 14 ( 12 ), 2545 – 2558, doi: 10.5194/hess‐14–2545‐2010.en_US
dc.identifier.citedreferenceWeijs, S. V., R. van Nooijen, and N. van de Giesen ( 2010b ), Kullback‐Leibler divergence as a forecast skill score with classic reliability‐resolution‐uncertainty decomposition, Mon. Weather Rev, 138 ( 9 ), 3387 – 3399, doi: 10.1175/2010MWR3229.1.en_US
dc.identifier.citedreferenceXu, L., D. Yuan, and Z. Ye ( 2010 ), Parameter sensitivity analysis and multi‐objective optimization on Hymod model, Water Resour. Power, 28 ( 11 ), 15 – 17.en_US
dc.identifier.citedreferenceYoung, P. C., and M. Ratto ( 2009 ), A unified approach to environmental systems modeling, Stochastic Environ. Res. Risk Assess., 23 ( 7SI ), 1037 – 1057, doi: 10.1007/s00477‐008‐0271‐1.en_US
dc.identifier.citedreferenceAbebe, A. J., and R. K. Price ( 2003 ), Managing uncertainty in hydrological models using complementary models, Hydrol. Sci. J., 48 ( 5 ), 679 – 692, doi: 10.1623/hysj.48.5.679.51450.en_US
dc.identifier.citedreferenceAjami, N. K., Q. Y. Duan, X. G. Gao, and S. Sorooshian ( 2006 ), Multimodel combination techniques for analysis of hydrological simulations: application to distributed model intercomparison project results, J Hydrometeorol, 7 ( 4 ), 755 – 768, doi: 10.1175/JHM519.1.en_US
dc.identifier.citedreferenceAjami, N. K., Q. Y. Duan, and S. Sorooshian ( 2007 ), An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403, doi: 10.1029/2005WR004745.en_US
dc.identifier.citedreferenceAmorocho, J., and B. Espildor ( 1973 ), Entropy in assessment of uncertainty in hydrologic systems and models, Water Resour. Res., 9 ( 6 ), 1511 – 1522, doi: 10.1029/WR009i006p01511.en_US
dc.identifier.citedreferenceBates, B. C., and E. P. Campbell ( 2001 ), A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling, Water Resour. Res, 37 ( 4 ), 937 – 947, doi: 10.1029/2000WR900363.en_US
dc.identifier.citedreferenceBellman, R. E., and R. Corporation ( 1957 ), Dynamic Programming, Princeton University Press, Princeton NJ.en_US
dc.identifier.citedreferenceBeven, K. ( 1989 ), Changing ideas in hydrology—The case of physically‐based models, J. Hydrol., 105 ( 1–2 ), 157 – 172, doi: 10.1016/0022‐1694(89)90101‐7.en_US
dc.identifier.citedreferenceBeven, K., and A. Binley ( 1992 ), The future of distributed models—Model calibration and uncertainty prediction, Hydrol. Process., 6 ( 3 ), 279 – 298, doi: 10.1002/hyp.3360060305.en_US
dc.identifier.citedreferenceBeven, K., P. J. Smith, and A. Wood ( 2011 ), On the colour and spin of epistemic error (and what we might do about it), Hydrol. Earth Syst. Sci. Discuss., 8, 5355 – 5386, doi: 10.5194/hessd‐8–5355‐2011.en_US
dc.identifier.citedreferenceBox, G. E. P., and G. M. Jenkins ( 1976 ), Time Series Analysis: Forecasting and Control, revised ed., Holden‐Day, San Francisco, Calif.en_US
dc.identifier.citedreferenceBoyle, D. P. ( 2000 ), Multicriteria calibration of hydrological models, Ph.D. thesis, Dep. of Hydrology and Water Resources, Univ. of Arizona, Tucson, Ariz.en_US
dc.identifier.citedreferenceBrazil, L. E. ( 1988 ), Multilevel calibration strategy for complex hydrologic simulation models, Ph.D. thesis, 217 pp., Colorado State Univ., Fort Collins, Colo.en_US
dc.identifier.citedreferenceBulygina, N., and H. Gupta ( 2009 ), Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation, Water Resour. Res., 45, W00B13, doi: 10.1029/2007WR006749.en_US
dc.identifier.citedreferenceBulygina, N., and H. Gupta ( 2010 ), How Bayesian data assimilation can be used to estimate the mathematical structure of a model, Stochastic Environ Res. Risk Assess., 24 ( 6SI ), 925 – 937, doi: 10.1007/s00477‐010‐0387‐y.en_US
dc.identifier.citedreferenceBulygina, N., and H. Gupta ( 2011 ), Correcting the mathematical structure of a hydrological model via Bayesian data assimilation, Water Resour. Res., 47, W05514, doi: 10.1029/2010WR009614.en_US
dc.identifier.citedreferenceBurnash, R. J. E., R. L. Ferral, and R. A. Mcguire ( 1973 ), A Generalized Streamflow Simulation System, 204 pp., Joint Fed.‐State River Forecast Center, Sacramento, Calif.en_US
dc.identifier.citedreferenceButts, M. B., J. T. Payne, M. Kristensen, and H. Madsen ( 2004 ), An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation, J. Hydrol., 298 ( 1–4 ), 242 – 266, doi: 10.1016/j.hydrol.2004.03.042.en_US
dc.identifier.citedreferenceChapman, T. G. ( 1986 ), Entropy as a measure of hydrologic data uncertainty and model performance, J. Hydrol., 85 ( 1–2 ), 111 – 126, doi: 10.1016/0022–1694(86)90079‐X.en_US
dc.identifier.citedreferenceClark, M. P., A. G. Slater, D. E. Rupp, R. A. Woods, J. A. Vrugt, H. V. Gupta, T. Wagener, and L. E. Hay ( 2008 ), Framework for understanding structural errors (fuse): A modular framework to diagnose differences between hydrological models, Water Resour. Res., 44, W00B02, doi: 10.1029/2007WR006735.en_US
dc.identifier.citedreferenceCover, T. M., and J. A. Thomas ( 2006 ), Elements of Information Theory, John Wiley, Hoboken, N. J.en_US
dc.identifier.citedreferenceDuan, Q., and J. Schaake ( 2002 ), Results from the 2nd International Workshop On Model Parameter Estimation Experiment (MOPEX), NWS, NOAA, Md.en_US
dc.identifier.citedreferenceDuan, Q. Y., N. K. Ajami, X. G. Gao, and S. Sorooshian ( 2007 ), Multi‐model ensemble hydrologic prediction using Bayesian model averaging, Adv. Water Resour., 30 ( 5 ), 1371 – 1386, doi: 10.1016/j.advwatres.2006.11.014.en_US
dc.identifier.citedreferenceEwen, J., G. O'Donnell, A. Burton, and E. O'Connell ( 2006 ), Errors and uncertainty in physically‐based rainfall‐runoff modelling of catchment change effects, J. Hydrol., 330 ( 3–4 ), 641 – 650, doi: 10.1016/j.jhydrot.2006.04.024.en_US
dc.identifier.citedreferenceFenicia, F., H. Savenije, P. Matgen, and L. Pfister ( 2008 ), Understanding catchment behavior through stepwise model concept improvement, Water Resour. Res., 44, W01402, doi: 10.1029/2006WR005563.en_US
dc.identifier.citedreferenceNeuman, S. P. ( 2003a ), Maximum likelihood Bayesian averaging of uncertain model predictions, Stochastic Environ Res. Risk Assess., 17 ( 5 ), 291 – 305, doi: 10.1007/s00477‐003‐0151‐7.en_US
dc.identifier.citedreferenceZhang, X. S., F. M. Liang, R. Srinivasan, and M. Van Liew ( 2009 ), Estimating uncertainty of streamflow simulation using Bayesian neural networks, Water Resour. Res., 45, W02403, doi: 10.1029/2008WR007030.en_US
dc.identifier.citedreferenceZhao, R. J., Y. L. Zhuang, L. R. Fang, X. R. Liu, and Q. S. Zhang ( 1980 ), The Xinanjiang model, paper presented at Hydrological Forecasting of the Oxford Symposium, IAHS AISH Publ.en_US
dc.identifier.citedreferenceMoore, R. J. ( 1985 ), The probability‐distributed principle and runoff production at point and basin scales, Hydrolog Sci. J., 30 ( 2 ), 273 – 297, doi: 10.1080/02626668509490989.en_US
dc.identifier.citedreferenceNadarajah, S. ( 2005 ), A generalized normal distribution, J. Appl. Stat., 32 ( 7 ), 685 – 694, doi: 10.1080/02664760500079464.en_US
dc.identifier.citedreferenceNearing, G. S., H. V. Gupta, W. T. Crow, and W. Gong ( 2013 ), An Approach to Quantifying the Efficiency of a Bayesian Filter, Water Resour. Res., doi: 10.1002/wrcr.20177.en_US
dc.identifier.citedreferenceFernando, T., H. R. Maier, and G. C. Dandy ( 2009 ), Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach, J. Hydrol., 367 ( 3–4 ), 165 – 176, doi: 10.1016/j.jhydrol.2008.10.019.en_US
dc.identifier.citedreferenceFreer, J., K. Beven, and B. Ambroise ( 1996 ), Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach, Water Resour. Res., 32 ( 7 ), 2161 – 2173, doi: 10.1029/95WR03723.en_US
dc.identifier.citedreferenceGeorgakakos, K. P., D. J. Seo, H. Gupta, J. Schaake, and M. B. Butts ( 2004 ), Towards the characterization of streamflow simulation uncertainty through multimodel ensembles, J. Hydrol., 298 ( 1–4 ), 222 – 241, doi: 10.1016/j.jhydrol.2004.03.037.en_US
dc.identifier.citedreferenceGong, W. ( 2012 ), Watershed model uncertainty analysis based on information entropy and mutual information, Ph.D. thesis, Dep. of Hydraulic Engineering, Tsinghua Univ., Beijing, China.en_US
dc.identifier.citedreferenceGranger, C. W. J., and J. Lin ( 1994 ), Using the mutual information coefficient to identify lags in non‐linear models, J. Time Ser. Anal., 15, 371 – 384.en_US
dc.identifier.citedreferenceGupta, H. V., and H. Kling ( 2011 ), On typical range, sensitivity, and normalization of mean squared error and Nash‐Sutcliffe efficiency type metrics, Water Resour. Res., 47, W10601, doi: 10.1029/2011WR010962.en_US
dc.identifier.citedreferenceGupta, H. V., S. Sorooshian, and P. O. Yapo ( 1998 ), Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information, Water Resour. Res., 34 ( 4 ), 751 – 763, doi: 10.1029/97WR03495.en_US
dc.identifier.citedreferenceGupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez ( 2009 ), Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377 ( 1–2 ), 80 – 91, doi: 10.1016/j.jhydrol.2009.08.003.en_US
dc.identifier.citedreferenceGupta, H. V., M. P. Clark, J. A. Vrugt, G. Abramowitz, and M. Ye ( 2012 ), Towards a comprehensive assessment of model structural adequacy, Water Resour. Res., 48, W08301, doi: 10.1029/2011WR011044.en_US
dc.identifier.citedreferenceHero, A. O., B. Ma, O. Michel, and J. Gorman ( 2002 ), Applications of entropic spanning graphs, IEEE Signal Process. Mag., 19 ( 5 ), 85 – 95, doi: 10.1109/MSP.2002.1028355.en_US
dc.identifier.citedreferenceHoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky ( 1999 ), Bayesian model averaging: A tutorial, Stat. Sci., 14 ( 4 ), 382 – 401.en_US
dc.identifier.citedreferenceHsu, K. L., H. V. Gupta, X. G. Gao, S. Sorooshian, and B. Imam ( 2002 ), Self‐organizing linear output map (Solo): An artificial neural network suitable for hydrologic modeling and analysis, Water Resour. Res., 38 ( 12 ), 1302, doi: 10.1029/2001WR000795.en_US
dc.identifier.citedreferenceHyvarinen, A., and E. Oja ( 1997 ), A fast fixed‐point algorithm for independent component analysis, Neural Comput., 9 ( 7 ), 1483, doi: 10.1162/neco.1997.9.7.1483.en_US
dc.identifier.citedreferenceHyvarinen, A., and E. Oja ( 2000 ), Independent component analysis: Algorithms and applications, Neural Netw., 13 ( 4–5 ), 411 – 430, doi: 10.1016/S0893‐6080(00)00026‐5.en_US
dc.identifier.citedreferenceHyvarinen, A., J. Karhunen, and E. Oja ( 2001 ), Independent Component Analysis, John Wiley, New York.en_US
dc.identifier.citedreferenceKaheil, Y. H., M. K. Gill, M. Mckee, and L. Bastidas ( 2006 ), A new Bayesian recursive technique for parameter estimation, Water Resour. Res., 42, W08423, doi: 10.1029/2005WR004529.en_US
dc.identifier.citedreferenceKavetski, D., G. Kuczera, and S. W. Franks ( 2006a ), Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resour. Res., 42, W03407, doi: 10.1029/2005WR004368.en_US
dc.identifier.citedreferenceKavetski, D., G. Kuczera, and S. W. Franks ( 2006b ), Bayesian analysis of input uncertainty in hydrological modeling: 2. Application, Water Resour. Res., 42, W03408, doi: 10.1029/2005WR004376.en_US
dc.identifier.citedreferenceKhan, S., S. Bandyopadhyay, A. R. Ganguly, S. Saigal, D. J. I. Erickson, V. Protopopescu, and G. Ostrouchov ( 2007 ), Relative performance of mutual information estimation methods for quantifying the dependence among short and noisy data, Phys. Rev. E., 76 (2), 26209.en_US
dc.identifier.citedreferenceKuczera, G. ( 1982 ), On the relationship between the reliability of parameter estimates and hydrologic time‐series data used in calibration, Water Resour. Res., 18 ( 1 ), 146 – 154, doi: 10.1029/WR018i001p00146.en_US
dc.identifier.citedreferenceLeiva‐Murillo, J. M., and A. Artes‐Rodriguez ( 2007 ), Maximization of mutual information for supervised linear feature extraction, IEEE Trans. Neural Netw., 18 ( 5 ), 1433 – 1441, doi: 10.1109/TNN.2007.891630.en_US
dc.identifier.citedreferenceLeonenko, N., L. Pronzat, and V. Savani ( 2008 ), A class of Renyi information estimators for multidimensional densities, Ann. Stat., 36 ( 5 ), 2153 – 2182, doi: 10.1214/07‐AOS539.en_US
dc.identifier.citedreferenceLi, M., D. Yang, J. Chen, and S. S. Hubbard ( 2012 ), Calibration of a distributed flood forecasting model with input uncertainty using a Bayesian framework, Water Resour. Res., 48 ( 8 ), W08510, doi: 10.1029/2010WR010062.en_US
dc.identifier.citedreferenceLin, Z., and M. B. Beck ( 2007 ), On the identification of model structure in hydrological and environmental systems, Water Resour. Res., 43, W02402, doi: 10.1029/2005WR004796.en_US
dc.identifier.citedreferenceMarshall, L., D. Nott, and A. Sharma ( 2007 ), Towards dynamic catchment modelling: A Bayesian hierarchical mixtures of experts framework, Hydrol. Process., 21 ( 7 ), 847 – 861, doi: 10.1002/hyp.6294.en_US
dc.identifier.citedreferenceMisirli, F., H. V. Gupta, S. Sorooshian, and M. Thiemann ( 2003 ), Bayesian recursive estimation of parameter and output uncertainty for watershed models, in Calibration of Watershed Models, Water Sci.Appl. Ser., vol. 6, edited by Q. Duan, pp. 113 – 124, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceNeuman, S. P. ( 2003b ), Accounting for conceptual model uncertainty via maximum likelihood Bayesian model averaging, in Calibration and Reliability in Groundwater Modelling: A Few Steps Closer to Reality, edited by K. Kovar and Z. Hrkal, pp. 303 – 313, Int. Assoc. Hydrol. Sci., Wallingford, Conn.en_US
dc.identifier.citedreferencePokhrel, P., and H. V. Gupta ( 2010 ), On the use of spatial regularization strategies to improve calibration of distributed watershed models, Water Resour. Res., 46, W01505, doi: 10.1029/2009WR008066.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.