Show simple item record

Spatiotemporal expression of zic genes during vertebrate inner ear development

dc.contributor.authorChervenak, Andrew P.en_US
dc.contributor.authorHakim, Ibrahim S.en_US
dc.contributor.authorBarald, Kate F.en_US
dc.date.accessioned2013-06-18T18:32:42Z
dc.date.available2014-09-02T14:12:52Zen_US
dc.date.issued2013-07en_US
dc.identifier.citationChervenak, Andrew P.; Hakim, Ibrahim S.; Barald, Kate F. (2013). "Spatiotemporal expression of zic genes during vertebrate inner ear development." Developmental Dynamics 242(7): 897-908. <http://hdl.handle.net/2027.42/98245>en_US
dc.identifier.issn1058-8388en_US
dc.identifier.issn1097-0177en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98245
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherInner Earen_US
dc.subject.otherEmbryogenesisen_US
dc.subject.otherMouseen_US
dc.subject.otherChicken_US
dc.subject.otherZic Gene Expressionen_US
dc.titleSpatiotemporal expression of zic genes during vertebrate inner ear developmenten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPediatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23606270en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98245/1/dvdy23978.pdf
dc.identifier.doi10.1002/dvdy.23978en_US
dc.identifier.sourceDevelopmental Dynamicsen_US
dc.identifier.citedreferenceRaft S, Nowotschin S, Liao J, Morrow BE. 2004. Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development 131: 1801 – 1812.en_US
dc.identifier.citedreferencePourebrahim R, Houtmeyers R, Ghogomu S, Janssens S, Thelie A, Tran HT, Langenberg T, Vleminckx K, Bellefroid E, Cassiman JJ, Tejpar S. 2011. Transcription factor Zic2 inhibits Wnt/beta‐catenin protein signaling. J Biol Chem 286: 37732 – 37740.en_US
dc.identifier.citedreferencePuschel AW, Westerfield M, Dressler GR. 1992. Comparative analysis of Pax‐2 protein distributions during neurulation in mice and zebrafish. Mech Dev 38: 197 – 208.en_US
dc.identifier.citedreferenceRiccomagno MM, Martinu L, Mulheisen M, Wu DK, Epstein DJ. 2002. Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes Dev 16: 2365 – 2378.en_US
dc.identifier.citedreferenceRiccomagno MM, Takada S, Epstein DJ. 2005. Wnt‐dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev 19: 1612 – 1623.en_US
dc.identifier.citedreferenceRinkwitz‐Brandt S, Justus M, Oldenettel I, Arnold HH, Bober E. 1995. Distinct temporal expression of mouse Nkx‐5.1 and Nkx‐5.2 homeobox genes during brain and ear development. Mech Dev 52: 371 – 381.en_US
dc.identifier.citedreferenceRinkwitz‐Brandt S, Arnold HH, Bober E. 1996. Regionalized expression of Nkx5‐1, Nkx5‐2, Pax2 and sek genes during mouse inner ear development. Hear Res 99: 129 – 138.en_US
dc.identifier.citedreferenceSanchez‐Calderon H, Martin‐Partido G, Hidalgo‐Sanchez M. 2002. Differential expression of Otx2, Gbx2, Pax2, and Fgf8 in the developing vestibular and auditory sensory organs. Brain Res Bull 57: 321 – 323.en_US
dc.identifier.citedreferenceSanchez‐Calderon H, Martin‐Partido G, Hidalgo‐Sanchez M. 2005. Pax2 expression patterns in the developing chick inner ear. Gene Expr Patterns 5: 763 – 773.en_US
dc.identifier.citedreferenceSanek NA, Taylor AA, Nyholm MK, Grinblat Y. 2009. Zebrafish zic2a patterns the forebrain through modulation of Hedgehog‐activated gene expression. Development 136: 3791 – 3800.en_US
dc.identifier.citedreferenceSaul SM, Brzezinski JAt, Altschuler RA, Shore SE, Rudolph DD, Kabara LL, Halsey KE, Hufnagel RB, Zhou J, Dolan DF, Glaser T. 2008. Math5 expression and function in the central auditory system. Mol Cell Neurosci 37: 153 – 169.en_US
dc.identifier.citedreferenceSechrist J, Serbedzija GN, Scherson T, Fraser SE, Bronner‐Fraser M. 1993. Segmental migration of the hindbrain neural crest does not arise from its segmental generation. Development 118: 691 – 703.en_US
dc.identifier.citedreferenceSerbedzija GN, Bronner‐Fraser M, Fraser SE. 1992. Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116: 297 – 307.en_US
dc.identifier.citedreferenceSun Rhodes LS, Merzdorf CS. 2006. The zic1 gene is expressed in chick somites but not in migratory neural crest. Gene Expr Patterns 6: 539 – 545.en_US
dc.identifier.citedreferenceTosney KW. 1982. The segregation and early migration of cranial neural crest cells in the avian embryo. Dev Biol 89: 13 – 24.en_US
dc.identifier.citedreferenceTrainor PA, Sobieszczuk D, Wilkinson D, Krumlauf R. 2002. Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways. Development 129: 433 – 442.en_US
dc.identifier.citedreferenceVazquez‐Echeverria C, Dominguez‐Frutos E, Charnay P, Schimmang T, Pujades C. 2008. Analysis of mouse kreisler mutants reveals new roles of hindbrain‐derived signals in the establishment of the otic neurogenic domain. Dev Biol 322: 167 – 178.en_US
dc.identifier.citedreferenceVitelli F, Viola A, Morishima M, Pramparo T, Baldini A, Lindsay E. 2003. TBX1 is required for inner ear morphogenesis. Hum Mol Genet 12: 2041 – 2048.en_US
dc.identifier.citedreferenceWarner SJ, Hutson MR, Oh SH, Gerlach‐Bank LM, Lomax MI, Barald KF. 2003. Expression of ZIC genes in the development of the chick inner ear and nervous system. Dev Dyn 226: 702 – 712.en_US
dc.identifier.citedreferenceWatanabe K, Takeda K, Katori Y, Ikeda K, Oshima T, Yasumoto K, Saito H, Takasaka T, Shibahara S. 2000. Expression of the Sox10 gene during mouse inner ear development. Brain Res Mol Brain Res 84: 141 – 145.en_US
dc.identifier.citedreferenceWilkinson DG, Nieto MA. 1993. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol 225: 361 – 373.en_US
dc.identifier.citedreferenceAli RG, Bellchambers HM, Arkell RM. 2012. Zinc fingers of the cerebellum (Zic): transcription factors and co‐factors. Int J Biochem Cell Biol 44: 2065 – 2068.en_US
dc.identifier.citedreferenceAruga J. 2004. The role of Zic genes in neural development. Mol Cell Neurosci 26: 205 – 221.en_US
dc.identifier.citedreferenceAruga J, Minowa O, Yaginuma H, Kuno J, Nagai T, Noda T, Mikoshiba K. 1998. Mouse Zic1 is involved in cerebellar development. J Neurosci 18: 284 – 293.en_US
dc.identifier.citedreferenceBank LM, Bianchi LM, Ebisu F, Lerman‐Sinkoff D, Smiley EC, Shen YC, Ramamurthy P, Thompson DL, Roth TM, Beck CR, Flynn M, Teller RS, Feng L, Llewellyn GN, Holmes B, Sharples C, Coutinho‐Budd J, Linn SA, Chervenak AP, Dolan DF, Benson J, Kanicki A, Martin CA, Altschuler R, Koch AE, Jewett EM, Germiller JA, Barald KF. 2012. Macrophage migration inhibitory factor acts as a neurotrophin in the developing inner ear. Development 139: 4666 – 4674.en_US
dc.identifier.citedreferenceBenedyk MJ, Mullen JR, DiNardo S. 1994. odd‐paired: a zinc finger pair‐rule protein required for the timely activation of engrailed and wingless in Drosophila embryos. Genes Dev 8: 105 – 117.en_US
dc.identifier.citedreferenceBok J, Bronner‐Fraser M, Wu DK. 2005. Role of the hindbrain in dorsoventral but not anteroposterior axial specification of the inner ear. Development 132: 2115 – 2124.en_US
dc.identifier.citedreferenceBok J, Brunet LJ, Howard O, Burton Q, Wu DK. 2007. Role of hindbrain in inner ear morphogenesis: analysis of Noggin knockout mice. Dev Biol 311: 69 – 78.en_US
dc.identifier.citedreferenceBraunstein EM, Crenshaw EB 3rd, Morrow BE, Adams JC. 2008. Cooperative function of Tbx1 and Brn4 in the periotic mesenchyme is necessary for cochlea formation. J Assoc Res Otolaryngol 9: 33 – 43.en_US
dc.identifier.citedreferenceBreuskin I, Bodson M, Thelen N, Thiry M, Borgs L, Nguyen L, Lefebvre PP, Malgrange B. 2009. Sox10 promotes the survival of cochlear progenitors during the establishment of the organ of Corti. Dev Biol 335: 327 – 339.en_US
dc.identifier.citedreferenceBronner ME. 2012. Formation and migration of neural crest cells in the vertebrate embryo. Histochem Cell Biol 138: 179 – 186.en_US
dc.identifier.citedreferenceBurton Q, Cole LK, Mulheisen M, Chang W, Wu DK. 2004. The role of Pax2 in mouse inner ear development. Dev Biol 272: 161 – 175.en_US
dc.identifier.citedreferenceChan WY, Tam PP. 1988. A morphological and experimental study of the mesencephalic neural crest cells in the mouse embryo using wheat germ agglutinin‐gold conjugate as the cell marker. Development 102: 427 – 442.en_US
dc.identifier.citedreferenceChoo D. 2007. The role of the hindbrain in patterning of the otocyst. Dev Biol 308: 257 – 265.en_US
dc.identifier.citedreferenceElms P, Siggers P, Napper D, Greenfield A, Arkell R. 2003. Zic2 is required for neural crest formation and hindbrain patterning during mouse development. Dev Biol 264: 391 – 406.en_US
dc.identifier.citedreferenceFujimi TJ, Hatayama M, Aruga J. 2012. Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/beta‐catenin signaling pathway. Dev Biol 361: 220 – 231.en_US
dc.identifier.citedreferenceGong TW, Hegeman AD, Shin JJ, Adler HJ, Raphael Y, Lomax MI. 1996. Identification of genes expressed after noise exposure in the chick basilar papilla. Hear Res 96: 20 – 32.en_US
dc.identifier.citedreferenceGrinberg I, Millen KJ. 2005. The ZIC gene family in development and disease. Clin Genet 67: 290 – 296.en_US
dc.identifier.citedreferenceHamburger V, Hamilton HL. 1992. A series of normal stages in the development of the chick embryo. 1951. Dev Dyn 195: 231 – 272.en_US
dc.identifier.citedreferenceHerman GE, El‐Hodiri HM. 2002. The role of ZIC3 in vertebrate development. Cytogenet Genome Res 99: 229 – 235.en_US
dc.identifier.citedreferenceHidalgo‐Sanchez M, Alvarado‐Mallart R, Alvarez IS. 2000. Pax2, Otx2, Gbx2 and Fgf8 expression in early otic vesicle development. Mech Dev 95: 225 – 229.en_US
dc.identifier.citedreferenceHutson MR, Lewis JE, Nguyen‐Luu D, Lindberg KH, Barald KF. 1999. Expression of Pax2 and patterning of the chick inner ear. J Neurocytol 28: 795 – 807.en_US
dc.identifier.citedreferenceInoue T, Hatayama M, Tohmonda T, Itohara S, Aruga J, Mikoshiba K. 2004. Mouse Zic5 deficiency results in neural tube defects and hypoplasia of cephalic neural crest derivatives. Dev Biol 270: 146 – 162.en_US
dc.identifier.citedreferenceJho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. 2002. Wnt/beta‐catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22: 1172 – 1183.en_US
dc.identifier.citedreferenceKil SH, Streit A, Brown ST, Agrawal N, Collazo A, Zile MH, Groves AK. 2005. Distinct roles for hindbrain and paraxial mesoderm in the induction and patterning of the inner ear revealed by a study of vitamin‐A‐deficient quail. Dev Biol 285: 252 – 271.en_US
dc.identifier.citedreferenceKlootwijk R, Franke B, van der Zee CE, de Boer RT, Wilms W, Hol FA, Mariman EC. 2000. A deletion encompassing Zic3 in bent tail, a mouse model for X‐linked neural tube defects. Hum Mol Genet 9: 1615 – 1622.en_US
dc.identifier.citedreferenceKoyabu Y, Nakata K, Mizugishi K, Aruga J, Mikoshiba K. 2001. Physical and functional interactions between Zic and Gli proteins. J Biol Chem 276: 6889 – 6892.en_US
dc.identifier.citedreferenceLawoko‐Kerali G, Rivolta MN, Holley M. 2002. Expression of the transcription factors GATA3 and Pax2 during development of the mammalian inner ear. J Comp Neurol 442: 378 – 391.en_US
dc.identifier.citedreferenceLi H, Liu H, Corrales CE, Mutai H, Heller S. 2004. Correlation of Pax‐2 expression with cell proliferation in the developing chicken inner ear. J Neurobiol 60: 61 – 70.en_US
dc.identifier.citedreferenceLiang JK, Bok J, Wu DK. 2010. Distinct contributions from the hindbrain and mesenchyme to inner ear morphogenesis. Dev Biol 337: 324 – 334.en_US
dc.identifier.citedreferenceMaurus D, Harris WA. 2009. Zic‐associated holoprosencephaly: zebrafish Zic1 controls midline formation and forebrain patterning by regulating Nodal, Hedgehog, and retinoic acid signaling. Genes Dev 23: 1461 – 1473.en_US
dc.identifier.citedreferenceMcMahon AR, Merzdorf CS. 2010. Expression of the zic1, zic2, zic3, and zic4 genes in early chick embryos. BMC Res Notes 3: 167.en_US
dc.identifier.citedreferenceMerzdorf CS. 2007. Emerging roles for zic genes in early development. Dev Dyn 236: 922 – 940.en_US
dc.identifier.citedreferenceMerzdorf CS, Sive HL. 2006. The zic1 gene is an activator of Wnt signaling. Int J Dev Biol 50: 611 – 617.en_US
dc.identifier.citedreferenceMizugishi K, Aruga J, Nakata K, Mikoshiba K. 2001. Molecular properties of Zic proteins as transcriptional regulators and their relationship to GLI proteins. J Biol Chem 276: 2180 – 2188.en_US
dc.identifier.citedreferenceMizugishi K, Hatayama M, Tohmonda T, Ogawa M, Inoue T, Mikoshiba K, Aruga J. 2004. Myogenic repressor I‐mfa interferes with the function of Zic family proteins. Biochem Biophys Res Commun 320: 233 – 240.en_US
dc.identifier.citedreferenceNagai T, Aruga J, Minowa O, Sugimoto T, Ohno Y, Noda T, Mikoshiba K. 2000. Zic2 regulates the kinetics of neurulation. Proc Natl Acad Sci USA 97: 1618 – 1623.en_US
dc.identifier.citedreferenceNornes HO, Dressler GR, Knapik EW, Deutsch U, Gruss P. 1990. Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development 109: 797 – 809.en_US
dc.identifier.citedreferenceNusslein‐Volhard C, Wieschaus E. 1980. Mutations affecting segment number and polarity in Drosophila. Nature 287: 795 – 801.en_US
dc.identifier.citedreferencePan H, Gustafsson MK, Aruga J, Tiedken JJ, Chen JC, Emerson CP, Jr. 2011. A role for Zic1 and Zic2 in Myf5 regulation and somite myogenesis. Dev Biol 351: 120 – 127.en_US
dc.identifier.citedreferencePhippard D, Heydemann A, Lechner M, Lu L, Lee D, Kyin T, Crenshaw EB, 3rd. 1998. Changes in the subcellular localization of the Brn4 gene product precede mesenchymal remodeling of the otic capsule. Hear Res 120: 77 – 85.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.