Show simple item record

Phylogenetic structure of vertebrate communities across the A ustralian arid zone

dc.contributor.authorLanier, Hayley C.en_US
dc.contributor.authorEdwards, Danielle L.en_US
dc.contributor.authorKnowles, L. Laceyen_US
dc.contributor.authorRiddle, Bretten_US
dc.date.accessioned2013-06-18T18:32:47Z
dc.date.available2014-08-01T19:11:33Zen_US
dc.date.issued2013-06en_US
dc.identifier.citationLanier, Hayley C.; Edwards, Danielle L.; Knowles, L. Lacey; Riddle, Brett (2013). "Phylogenetic structure of vertebrate communities across the A ustralian arid zone." Journal of Biogeography 40(6): 1059-1070. <http://hdl.handle.net/2027.42/98265>en_US
dc.identifier.issn0305-0270en_US
dc.identifier.issn1365-2699en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98265
dc.description.abstractAim To understand the relative importance of ecological and historical factors in structuring terrestrial vertebrate assemblages across the A ustralian arid zone, and to contrast patterns of community phylogenetic structure at a continental scale. Location Australia. Methods We present evidence from six lineages of terrestrial vertebrates (five lizard clades and one clade of marsupial mice) that have diversified in arid and semi‐arid A ustralia across 37 biogeographical regions. Measures of within‐lineage community phylogenetic structure and species turnover were computed to examine how patterns differ across the continent and between taxonomic groups. These results were examined in relation to climatic and historical factors, which are thought to play a role in community phylogenetic structure. Analyses using a novel sliding‐window approach confirm the generality of processes structuring the assemblages of the A ustralian arid zone at different spatial scales. Results Phylogenetic structure differed greatly across taxonomic groups. Although these lineages have radiated within the same biome – the A ustralian arid zone – they exhibit markedly different community structure at the regional and local levels. Neither current climatic factors nor historical habitat stability resulted in a uniform response across communities. Rather, historical and biogeographical aspects of community composition (i.e. local lineage persistence and diversification histories) appeared to be more important in explaining the variation in phylogenetic structure. While arid‐zone assemblages show an overall tendency towards phylogenetic clustering, this pattern was less pronounced at finer spatial scales. Main conclusions By focusing within different taxonomic groups and between those groups within regions, we show that although the vertebrate lineages we examined exhibited high diversity and low turnover across the arid zone, the underlying phylogenetic structure differs between regions and taxonomic groups, suggesting that taxon‐specific histories are more important than habitat stability in determining patterns of phylogenetic community relatedness.en_US
dc.publisherOxford University Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAustraliaen_US
dc.subject.otherCommunity Phylogenetic Structureen_US
dc.subject.otherCtenotusen_US
dc.subject.otherCtenophorusen_US
dc.subject.otherDiplodactylinaeen_US
dc.subject.otherIBRA Regionsen_US
dc.subject.otherArid Zoneen_US
dc.subject.otherPygopodidaeen_US
dc.subject.otherSminthopsinaeen_US
dc.subject.otherLeristaen_US
dc.titlePhylogenetic structure of vertebrate communities across the A ustralian arid zoneen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeography and Mapsen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98265/1/jbi12077.pdf
dc.identifier.doi10.1111/jbi.12077en_US
dc.identifier.sourceJournal of Biogeographyen_US
dc.identifier.citedreferencePianka, E.R. ( 1969 ) Sympatry of desert lizards ( Ctenotus ) in Western Australia. Ecology, 50, 1012 – 1030.en_US
dc.identifier.citedreferencePianka, E.R. ( 1972 ) Zoogeography and speciation of Australian desert lizards: an ecological perspective. Copeia, 1972, 127 – 145.en_US
dc.identifier.citedreferencePowney, G.D., Grenyer, R., Orme, C.D.L., Owens, I.P.F. & Meiri, S. ( 2010 ) Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Global Ecology and Biogeography, 19, 386 – 396.en_US
dc.identifier.citedreferencePrinzing, A., Reiffers, R., Braakhekke, W.G., Hennekens, S.M., Tackenberg, O., Ozinga, W.A., Schaminée, J.H.J. & van Groenendael, J.M. ( 2008 ) Less lineages – more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecology Letters, 11, 809 – 819.en_US
dc.identifier.citedreferenceRabosky, D.L., Reid, J., Cowan, M.A. & Foulkes, J. ( 2007 ) Overdispersion of body size in Australian desert lizard communities at local scales only: no evidence for the Narcissus effect. Oecologia, 154, 561 – 570.en_US
dc.identifier.citedreferenceRabosky, D.L., Cowan, M.A., Talaba, A.L. & Lovette, I.J. ( 2011 ) Species interactions mediate phylogenetic community structure in a hyperdiverse lizard assemblage from arid Australia. The American Naturalist, 178, 579 – 595.en_US
dc.identifier.citedreferenceShoo, L.P., Rose, R., Doughty, P., Austin, J.J. & Melville, J. ( 2008 ) Diversification patterns of pebble‐mimic dragons are consistent with historical disruption of important habitat corridors in arid Australia. Molecular Phylogenetics and Evolution, 48, 528 – 542.en_US
dc.identifier.citedreferenceSkinner, A. & Lee, M.S.Y. ( 2009 ) Body‐form evolution in the scincid lizard clade Lerista and the mode of macroevolutionary transitions. Evolutionary Biology, 36, 292 – 300.en_US
dc.identifier.citedreferenceSmith, L.A. & Adams, M. ( 2007 ) Revision of the Lerista muelleri species‐group (Lacertilia: Scincidae) in Western Australia, with a redescription of L. muelleri (Fischer, 1881) and the description of nine new species. Records of the Western Australian Museum, 23, 309 – 357.en_US
dc.identifier.citedreferenceSwenson, N.G. ( 2009 ) Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS ONE, 4, e4390.en_US
dc.identifier.citedreferenceSwenson, N.G., Enquist, B.J., Pither, J., Thompson, J. & Zimmerman, J.K. ( 2006 ) The problem and promise of scale dependency in community phylogenetics. Ecology, 87, 2418 – 2424.en_US
dc.identifier.citedreferenceVamosi, S.M., Heard, S.B., Vamosi, J.C. & Webb, C.O. ( 2009 ) Emerging patterns in the comparative analysis of phylogenetic community structure. Molecular Ecology, 18, 572 – 592.en_US
dc.identifier.citedreferenceWebb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. ( 2002 ) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475 – 505.en_US
dc.identifier.citedreferenceWebb, C.O., Cannon, C.H. & Davies, S.J. ( 2008 ) Ecological organization, biogeography, and the phylogenetic structure of rainforest tree communities. Tropical forest community ecology (ed. by W. Carson and S. Schnitzer ), pp. 79 – 97. Blackwell, Oxford.en_US
dc.identifier.citedreferenceWiens, J.J. ( 2011 ) The niche, biogeography and species interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2336 – 2350.en_US
dc.identifier.citedreferenceWiens, J.J. & Graham, C.H. ( 2005 ) Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Reviews of Ecology, Evolution, and Systematics, 36, 519 – 539.en_US
dc.identifier.citedreferenceWilson, S. & Swan, G. ( 2008 ) A complete guide to reptiles of Australia, 2nd edn. New Holland, Sydney.en_US
dc.identifier.citedreferenceDickman, C.R., Haythornthwaite, A.S., McNaught, G.H., Mahon, P.S., Tamayo, B. & Letnic, M. ( 2001 ) Population dynamics of three species of dasyurid marsupials in arid central Australia: a 10‐year study. Wildlife Research, 28, 493 – 506.en_US
dc.identifier.citedreferenceDoughty, P. & Hutchinson, M.N. ( 2008 ) A new species of Lucasium (Squamata: Diplodactylidae) from the southern deserts of Western Australia and South Australia. Records of the Western Australian Museum, 25, 95 – 106.en_US
dc.identifier.citedreferenceDoughty, P., Oliver, P. & Adams, M. ( 2008 ) Systematics of stone geckos in the genus Diplodactylus (Reptilia: Diplodactylidae) from northwestern Australia, with a description of a new species from the Northwest Cape, Western Australia. Records of the Western Australian Museum, 24, 247 – 265.en_US
dc.identifier.citedreferenceDrummond, A.J. & Rambaut, A. ( 2007 ) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.en_US
dc.identifier.citedreferenceFujioka, T., Chappell, J., Fifield, L.K. & Rhodes, E.J. ( 2009 ) Australian desert dune fields initiated with Pliocene–Pleistocene global climatic shift. Geology, 37, 51 – 54.en_US
dc.identifier.citedreferenceGordon, C.E., Dickman, C.R. & Thompson, M.B. ( 2010 ) Partitioning of temporal activity among desert lizards in relation to prey availability and temperature. Australian Ecology, 35, 41 – 52.en_US
dc.identifier.citedreferenceGraham, C.H. & Fine, P.V.A. ( 2008 ) Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecology Letters, 11, 1265 – 1277.en_US
dc.identifier.citedreferenceGraham, C.H., Parra, J.L., Rahbek, C. & McGuire, J.A. ( 2009 ) Phylogenetic structure in tropical hummingbird communities. Proceedings of the National Academy of Sciences USA, 106, 19673 – 19678.en_US
dc.identifier.citedreferenceHarmon, L.J., Schulte, J.A., Larson, A. & Losos, J.B. ( 2003 ) Tempo and mode of evolutionary radiation in iguanian lizards. Science, 301, 961 – 964.en_US
dc.identifier.citedreferenceHaythornthwaite, A.S. & Dickman, C.R. ( 2006 ) Long‐distance movements by a small carnivorous marsupial: how Sminthopsis youngsoni (Marsupialia: Dasyuridae) uses habitat in an Australian sandridge desert. Journal of Zoology, 270, 543 – 549.en_US
dc.identifier.citedreferenceHendry, A.P., Lohmann, L.G., Conti, E., Cracraft, J., Crandall, K.A., Faith, D.P., Häuser, C., Joly, C.A., Kogure, K., Larigauderie, A., Magallón, S., Moritz, C., Tillier, S., Zardoya, R., Prieur‐Richard, A.‐H., Walther, B.A., Yahara, T. & Donoghue, M.J. ( 2010 ) Evolutionary biology in biodiversity science, conservation, and policy: a call to action. Evolution, 64, 1517 – 1528.en_US
dc.identifier.citedreferenceHewitt, G. ( 2000 ) The genetic legacy of the Quaternary ice ages. Nature, 405, 907 – 913.en_US
dc.identifier.citedreferenceHijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. ( 2005 ) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965 – 1978.en_US
dc.identifier.citedreferenceHutchinson, M.N., Doughty, P. & Oliver, P.M. ( 2009 ) Taxonomic revision of the stone geckos (Squamata: Diplodactylidae: Diplodactylus ) of southern Australia. Zootaxa, 2167, 25 – 46.en_US
dc.identifier.citedreferenceJames, C.D. & Shine, R. ( 2000 ) Why are there so many coexisting species of lizards in Australian deserts? Oecologia, 125, 127 – 141.en_US
dc.identifier.citedreferenceJennings, W.B., Pianka, E.R. & Donnellan, S. ( 2003 ) Systematics of the lizard family Pygopodidae with implications for the diversification of Australian temperate biotas. Systematic Biology, 52, 757 – 780.en_US
dc.identifier.citedreferenceKembel, S.W. ( 2009 ) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecology Letters, 12, 949 – 960.en_US
dc.identifier.citedreferenceKembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P. & Webb, C.O. ( 2010 ) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463 – 1464.en_US
dc.identifier.citedreferenceKooyman, R., Rossetto, M., Cornwell, W. & Westoby, M. ( 2011 ) Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests. Global Ecology and Biogeography, 20, 707 – 716.en_US
dc.identifier.citedreferenceLeibold, M.A., Economo, E.P. & Peres‐Neto, P. ( 2010 ) Metacommunity phylogenetics: separating the roles of environmental filters and historical biogeography. Ecology Letters, 13, 1290 – 1299.en_US
dc.identifier.citedreferenceMacphail, M.K. ( 1997 ) Late Neogene climates in Australia: fossil pollen‐ and spore‐based estimates in retrospect and prospect. Australian Journal of Botany, 45, 425 – 464.en_US
dc.identifier.citedreferenceMcGill, B.J. ( 2010 ) Matters of scale. Science, 328, 575 – 576.en_US
dc.identifier.citedreferenceMelville, J., Schulte, J.A. & Larson, A. ( 2001 ) A molecular phylogenetic study of ecological diversification in the Australian lizard genus Ctenophorus. Journal of Experimental Zoology, 291, 339 – 353.en_US
dc.identifier.citedreferenceMenkhorst, P. & Knight, F. ( 2004 ) A field guide to the mammals of Australia, 2nd edn. Oxford University Press, Oxford.en_US
dc.identifier.citedreferenceMoritz, C. ( 2002 ) Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology, 51, 238 – 254.en_US
dc.identifier.citedreferenceMorton, S.R., Stafford Smith, D.M., Dickman, C.R., Dunkerley, D.L., Friedel, M.H., McAllister, R.R.J., Reid, J.R.W., Roshier, D.A., Smith, M.A., Walsh, F.J., Wardle, G.M., Watson, I.W. & Westoby, M. ( 2011 ) A fresh framework for the ecology of arid Australia. Journal of Arid Environments, 75, 313 – 329.en_US
dc.identifier.citedreferenceNylander, J.A.A. ( 2004 ) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.en_US
dc.identifier.citedreferencePepper, M., Fujita, M.K., Moritz, C. & Keogh, J.S. ( 2011 ) Palaeoclimate change drove diversification among isolated mountain refugia in the Australian arid zone. Molecular Ecology, 20, 1529 – 1545.en_US
dc.identifier.citedreferenceBryant, J.A., Lamanna, C., Morlon, H., Kerkhoff, A.J., Enquist, B.J. & Green, J.L. ( 2008 ) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences USA, 105, 11505 – 11511.en_US
dc.identifier.citedreferenceByrne, M. ( 2008 ) Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quaternary Science Reviews, 27, 2576 – 2585.en_US
dc.identifier.citedreferenceByrne, M., Yeates, D.K., Joseph, L., Kearney, M., Bowler, J., Williams, M.A.J., Cooper, S., Donnellan, S.C., Keogh, J.S., Leys, R., Melville, J., Murphy, D.J., Porch, N. & Wyrwoll, K.‐H. ( 2008 ) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology, 17, 4398 – 4417.en_US
dc.identifier.citedreferenceCardillo, M. ( 2011 ) Phylogenetic structure of mammal assemblages at large geographical scales: linking phylogenetic community ecology with macroecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2545 – 2553.en_US
dc.identifier.citedreferenceCavender‐Bares, J., Keen, A. & Miles, B. ( 2006 ) Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology, 87, S109 – S122.en_US
dc.identifier.citedreferenceCavender‐Bares, J., Kozak, K.H., Fine, P.V.A. & Kembel, S.W. ( 2009 ) The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693 – 715.en_US
dc.identifier.citedreferenceCutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J. & Lawler, J.J. ( 2007 ) Random forests for classification in ecology. Ecology, 88, 2783 – 2792.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.