Phylogenetic structure of vertebrate communities across the A ustralian arid zone
dc.contributor.author | Lanier, Hayley C. | en_US |
dc.contributor.author | Edwards, Danielle L. | en_US |
dc.contributor.author | Knowles, L. Lacey | en_US |
dc.contributor.author | Riddle, Brett | en_US |
dc.date.accessioned | 2013-06-18T18:32:47Z | |
dc.date.available | 2014-08-01T19:11:33Z | en_US |
dc.date.issued | 2013-06 | en_US |
dc.identifier.citation | Lanier, Hayley C.; Edwards, Danielle L.; Knowles, L. Lacey; Riddle, Brett (2013). "Phylogenetic structure of vertebrate communities across the A ustralian arid zone." Journal of Biogeography 40(6): 1059-1070. <http://hdl.handle.net/2027.42/98265> | en_US |
dc.identifier.issn | 0305-0270 | en_US |
dc.identifier.issn | 1365-2699 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/98265 | |
dc.description.abstract | Aim To understand the relative importance of ecological and historical factors in structuring terrestrial vertebrate assemblages across the A ustralian arid zone, and to contrast patterns of community phylogenetic structure at a continental scale. Location Australia. Methods We present evidence from six lineages of terrestrial vertebrates (five lizard clades and one clade of marsupial mice) that have diversified in arid and semi‐arid A ustralia across 37 biogeographical regions. Measures of within‐lineage community phylogenetic structure and species turnover were computed to examine how patterns differ across the continent and between taxonomic groups. These results were examined in relation to climatic and historical factors, which are thought to play a role in community phylogenetic structure. Analyses using a novel sliding‐window approach confirm the generality of processes structuring the assemblages of the A ustralian arid zone at different spatial scales. Results Phylogenetic structure differed greatly across taxonomic groups. Although these lineages have radiated within the same biome – the A ustralian arid zone – they exhibit markedly different community structure at the regional and local levels. Neither current climatic factors nor historical habitat stability resulted in a uniform response across communities. Rather, historical and biogeographical aspects of community composition (i.e. local lineage persistence and diversification histories) appeared to be more important in explaining the variation in phylogenetic structure. While arid‐zone assemblages show an overall tendency towards phylogenetic clustering, this pattern was less pronounced at finer spatial scales. Main conclusions By focusing within different taxonomic groups and between those groups within regions, we show that although the vertebrate lineages we examined exhibited high diversity and low turnover across the arid zone, the underlying phylogenetic structure differs between regions and taxonomic groups, suggesting that taxon‐specific histories are more important than habitat stability in determining patterns of phylogenetic community relatedness. | en_US |
dc.publisher | Oxford University Press | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Australia | en_US |
dc.subject.other | Community Phylogenetic Structure | en_US |
dc.subject.other | Ctenotus | en_US |
dc.subject.other | Ctenophorus | en_US |
dc.subject.other | Diplodactylinae | en_US |
dc.subject.other | IBRA Regions | en_US |
dc.subject.other | Arid Zone | en_US |
dc.subject.other | Pygopodidae | en_US |
dc.subject.other | Sminthopsinae | en_US |
dc.subject.other | Lerista | en_US |
dc.title | Phylogenetic structure of vertebrate communities across the A ustralian arid zone | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Geography and Maps | en_US |
dc.subject.hlbtoplevel | Social Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/98265/1/jbi12077.pdf | |
dc.identifier.doi | 10.1111/jbi.12077 | en_US |
dc.identifier.source | Journal of Biogeography | en_US |
dc.identifier.citedreference | Pianka, E.R. ( 1969 ) Sympatry of desert lizards ( Ctenotus ) in Western Australia. Ecology, 50, 1012 – 1030. | en_US |
dc.identifier.citedreference | Pianka, E.R. ( 1972 ) Zoogeography and speciation of Australian desert lizards: an ecological perspective. Copeia, 1972, 127 – 145. | en_US |
dc.identifier.citedreference | Powney, G.D., Grenyer, R., Orme, C.D.L., Owens, I.P.F. & Meiri, S. ( 2010 ) Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Global Ecology and Biogeography, 19, 386 – 396. | en_US |
dc.identifier.citedreference | Prinzing, A., Reiffers, R., Braakhekke, W.G., Hennekens, S.M., Tackenberg, O., Ozinga, W.A., Schaminée, J.H.J. & van Groenendael, J.M. ( 2008 ) Less lineages – more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecology Letters, 11, 809 – 819. | en_US |
dc.identifier.citedreference | Rabosky, D.L., Reid, J., Cowan, M.A. & Foulkes, J. ( 2007 ) Overdispersion of body size in Australian desert lizard communities at local scales only: no evidence for the Narcissus effect. Oecologia, 154, 561 – 570. | en_US |
dc.identifier.citedreference | Rabosky, D.L., Cowan, M.A., Talaba, A.L. & Lovette, I.J. ( 2011 ) Species interactions mediate phylogenetic community structure in a hyperdiverse lizard assemblage from arid Australia. The American Naturalist, 178, 579 – 595. | en_US |
dc.identifier.citedreference | Shoo, L.P., Rose, R., Doughty, P., Austin, J.J. & Melville, J. ( 2008 ) Diversification patterns of pebble‐mimic dragons are consistent with historical disruption of important habitat corridors in arid Australia. Molecular Phylogenetics and Evolution, 48, 528 – 542. | en_US |
dc.identifier.citedreference | Skinner, A. & Lee, M.S.Y. ( 2009 ) Body‐form evolution in the scincid lizard clade Lerista and the mode of macroevolutionary transitions. Evolutionary Biology, 36, 292 – 300. | en_US |
dc.identifier.citedreference | Smith, L.A. & Adams, M. ( 2007 ) Revision of the Lerista muelleri species‐group (Lacertilia: Scincidae) in Western Australia, with a redescription of L. muelleri (Fischer, 1881) and the description of nine new species. Records of the Western Australian Museum, 23, 309 – 357. | en_US |
dc.identifier.citedreference | Swenson, N.G. ( 2009 ) Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS ONE, 4, e4390. | en_US |
dc.identifier.citedreference | Swenson, N.G., Enquist, B.J., Pither, J., Thompson, J. & Zimmerman, J.K. ( 2006 ) The problem and promise of scale dependency in community phylogenetics. Ecology, 87, 2418 – 2424. | en_US |
dc.identifier.citedreference | Vamosi, S.M., Heard, S.B., Vamosi, J.C. & Webb, C.O. ( 2009 ) Emerging patterns in the comparative analysis of phylogenetic community structure. Molecular Ecology, 18, 572 – 592. | en_US |
dc.identifier.citedreference | Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. ( 2002 ) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475 – 505. | en_US |
dc.identifier.citedreference | Webb, C.O., Cannon, C.H. & Davies, S.J. ( 2008 ) Ecological organization, biogeography, and the phylogenetic structure of rainforest tree communities. Tropical forest community ecology (ed. by W. Carson and S. Schnitzer ), pp. 79 – 97. Blackwell, Oxford. | en_US |
dc.identifier.citedreference | Wiens, J.J. ( 2011 ) The niche, biogeography and species interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2336 – 2350. | en_US |
dc.identifier.citedreference | Wiens, J.J. & Graham, C.H. ( 2005 ) Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Reviews of Ecology, Evolution, and Systematics, 36, 519 – 539. | en_US |
dc.identifier.citedreference | Wilson, S. & Swan, G. ( 2008 ) A complete guide to reptiles of Australia, 2nd edn. New Holland, Sydney. | en_US |
dc.identifier.citedreference | Dickman, C.R., Haythornthwaite, A.S., McNaught, G.H., Mahon, P.S., Tamayo, B. & Letnic, M. ( 2001 ) Population dynamics of three species of dasyurid marsupials in arid central Australia: a 10‐year study. Wildlife Research, 28, 493 – 506. | en_US |
dc.identifier.citedreference | Doughty, P. & Hutchinson, M.N. ( 2008 ) A new species of Lucasium (Squamata: Diplodactylidae) from the southern deserts of Western Australia and South Australia. Records of the Western Australian Museum, 25, 95 – 106. | en_US |
dc.identifier.citedreference | Doughty, P., Oliver, P. & Adams, M. ( 2008 ) Systematics of stone geckos in the genus Diplodactylus (Reptilia: Diplodactylidae) from northwestern Australia, with a description of a new species from the Northwest Cape, Western Australia. Records of the Western Australian Museum, 24, 247 – 265. | en_US |
dc.identifier.citedreference | Drummond, A.J. & Rambaut, A. ( 2007 ) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. | en_US |
dc.identifier.citedreference | Fujioka, T., Chappell, J., Fifield, L.K. & Rhodes, E.J. ( 2009 ) Australian desert dune fields initiated with Pliocene–Pleistocene global climatic shift. Geology, 37, 51 – 54. | en_US |
dc.identifier.citedreference | Gordon, C.E., Dickman, C.R. & Thompson, M.B. ( 2010 ) Partitioning of temporal activity among desert lizards in relation to prey availability and temperature. Australian Ecology, 35, 41 – 52. | en_US |
dc.identifier.citedreference | Graham, C.H. & Fine, P.V.A. ( 2008 ) Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecology Letters, 11, 1265 – 1277. | en_US |
dc.identifier.citedreference | Graham, C.H., Parra, J.L., Rahbek, C. & McGuire, J.A. ( 2009 ) Phylogenetic structure in tropical hummingbird communities. Proceedings of the National Academy of Sciences USA, 106, 19673 – 19678. | en_US |
dc.identifier.citedreference | Harmon, L.J., Schulte, J.A., Larson, A. & Losos, J.B. ( 2003 ) Tempo and mode of evolutionary radiation in iguanian lizards. Science, 301, 961 – 964. | en_US |
dc.identifier.citedreference | Haythornthwaite, A.S. & Dickman, C.R. ( 2006 ) Long‐distance movements by a small carnivorous marsupial: how Sminthopsis youngsoni (Marsupialia: Dasyuridae) uses habitat in an Australian sandridge desert. Journal of Zoology, 270, 543 – 549. | en_US |
dc.identifier.citedreference | Hendry, A.P., Lohmann, L.G., Conti, E., Cracraft, J., Crandall, K.A., Faith, D.P., Häuser, C., Joly, C.A., Kogure, K., Larigauderie, A., Magallón, S., Moritz, C., Tillier, S., Zardoya, R., Prieur‐Richard, A.‐H., Walther, B.A., Yahara, T. & Donoghue, M.J. ( 2010 ) Evolutionary biology in biodiversity science, conservation, and policy: a call to action. Evolution, 64, 1517 – 1528. | en_US |
dc.identifier.citedreference | Hewitt, G. ( 2000 ) The genetic legacy of the Quaternary ice ages. Nature, 405, 907 – 913. | en_US |
dc.identifier.citedreference | Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. ( 2005 ) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965 – 1978. | en_US |
dc.identifier.citedreference | Hutchinson, M.N., Doughty, P. & Oliver, P.M. ( 2009 ) Taxonomic revision of the stone geckos (Squamata: Diplodactylidae: Diplodactylus ) of southern Australia. Zootaxa, 2167, 25 – 46. | en_US |
dc.identifier.citedreference | James, C.D. & Shine, R. ( 2000 ) Why are there so many coexisting species of lizards in Australian deserts? Oecologia, 125, 127 – 141. | en_US |
dc.identifier.citedreference | Jennings, W.B., Pianka, E.R. & Donnellan, S. ( 2003 ) Systematics of the lizard family Pygopodidae with implications for the diversification of Australian temperate biotas. Systematic Biology, 52, 757 – 780. | en_US |
dc.identifier.citedreference | Kembel, S.W. ( 2009 ) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecology Letters, 12, 949 – 960. | en_US |
dc.identifier.citedreference | Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P. & Webb, C.O. ( 2010 ) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463 – 1464. | en_US |
dc.identifier.citedreference | Kooyman, R., Rossetto, M., Cornwell, W. & Westoby, M. ( 2011 ) Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests. Global Ecology and Biogeography, 20, 707 – 716. | en_US |
dc.identifier.citedreference | Leibold, M.A., Economo, E.P. & Peres‐Neto, P. ( 2010 ) Metacommunity phylogenetics: separating the roles of environmental filters and historical biogeography. Ecology Letters, 13, 1290 – 1299. | en_US |
dc.identifier.citedreference | Macphail, M.K. ( 1997 ) Late Neogene climates in Australia: fossil pollen‐ and spore‐based estimates in retrospect and prospect. Australian Journal of Botany, 45, 425 – 464. | en_US |
dc.identifier.citedreference | McGill, B.J. ( 2010 ) Matters of scale. Science, 328, 575 – 576. | en_US |
dc.identifier.citedreference | Melville, J., Schulte, J.A. & Larson, A. ( 2001 ) A molecular phylogenetic study of ecological diversification in the Australian lizard genus Ctenophorus. Journal of Experimental Zoology, 291, 339 – 353. | en_US |
dc.identifier.citedreference | Menkhorst, P. & Knight, F. ( 2004 ) A field guide to the mammals of Australia, 2nd edn. Oxford University Press, Oxford. | en_US |
dc.identifier.citedreference | Moritz, C. ( 2002 ) Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology, 51, 238 – 254. | en_US |
dc.identifier.citedreference | Morton, S.R., Stafford Smith, D.M., Dickman, C.R., Dunkerley, D.L., Friedel, M.H., McAllister, R.R.J., Reid, J.R.W., Roshier, D.A., Smith, M.A., Walsh, F.J., Wardle, G.M., Watson, I.W. & Westoby, M. ( 2011 ) A fresh framework for the ecology of arid Australia. Journal of Arid Environments, 75, 313 – 329. | en_US |
dc.identifier.citedreference | Nylander, J.A.A. ( 2004 ) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. | en_US |
dc.identifier.citedreference | Pepper, M., Fujita, M.K., Moritz, C. & Keogh, J.S. ( 2011 ) Palaeoclimate change drove diversification among isolated mountain refugia in the Australian arid zone. Molecular Ecology, 20, 1529 – 1545. | en_US |
dc.identifier.citedreference | Bryant, J.A., Lamanna, C., Morlon, H., Kerkhoff, A.J., Enquist, B.J. & Green, J.L. ( 2008 ) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences USA, 105, 11505 – 11511. | en_US |
dc.identifier.citedreference | Byrne, M. ( 2008 ) Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quaternary Science Reviews, 27, 2576 – 2585. | en_US |
dc.identifier.citedreference | Byrne, M., Yeates, D.K., Joseph, L., Kearney, M., Bowler, J., Williams, M.A.J., Cooper, S., Donnellan, S.C., Keogh, J.S., Leys, R., Melville, J., Murphy, D.J., Porch, N. & Wyrwoll, K.‐H. ( 2008 ) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology, 17, 4398 – 4417. | en_US |
dc.identifier.citedreference | Cardillo, M. ( 2011 ) Phylogenetic structure of mammal assemblages at large geographical scales: linking phylogenetic community ecology with macroecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2545 – 2553. | en_US |
dc.identifier.citedreference | Cavender‐Bares, J., Keen, A. & Miles, B. ( 2006 ) Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology, 87, S109 – S122. | en_US |
dc.identifier.citedreference | Cavender‐Bares, J., Kozak, K.H., Fine, P.V.A. & Kembel, S.W. ( 2009 ) The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693 – 715. | en_US |
dc.identifier.citedreference | Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J. & Lawler, J.J. ( 2007 ) Random forests for classification in ecology. Ecology, 88, 2783 – 2792. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.