Show simple item record

Variation in tibial functionality and fracture susceptibility among healthy, young adults arises from the acquisition of biologically distinct sets of traits

dc.contributor.authorJepsen, Karl Jen_US
dc.contributor.authorEvans, Rachelen_US
dc.contributor.authorNegus, Charles Hen_US
dc.contributor.authorGagnier, Joel Jen_US
dc.contributor.authorCenti, Amandaen_US
dc.contributor.authorErlich, Tomeren_US
dc.contributor.authorHadid, Amiren_US
dc.contributor.authorYanovich, Ranen_US
dc.contributor.authorMoran, Daniel Sen_US
dc.date.accessioned2013-06-18T18:32:49Z
dc.date.available2014-08-01T19:11:33Zen_US
dc.date.issued2013-06en_US
dc.identifier.citationJepsen, Karl J; Evans, Rachel; Negus, Charles H; Gagnier, Joel J; Centi, Amanda; Erlich, Tomer; Hadid, Amir; Yanovich, Ran; Moran, Daniel S (2013). "Variation in tibial functionality and fracture susceptibility among healthy, young adults arises from the acquisition of biologically distinct sets of traits." Journal of Bone and Mineral Research 28(6): 1290-1300. <http://hdl.handle.net/2027.42/98270>en_US
dc.identifier.issn0884-0431en_US
dc.identifier.issn1523-4681en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98270
dc.description.abstractPhysiological systems like bone respond to many genetic and environmental factors by adjusting traits in a highly coordinated, compensatory manner to establish organ‐level function. To be mechanically functional, a bone should be sufficiently stiff and strong to support physiological loads. Factors impairing this process are expected to compromise strength and increase fracture risk. We tested the hypotheses that individuals with reduced stiffness relative to body size will show an increased risk of fracturing and that reduced strength arises from the acquisition of biologically distinct sets of traits (ie, different combinations of morphological and tissue‐level mechanical properties). We assessed tibial functionality retrospectively for 336 young adult women and men engaged in military training, and calculated robustness (total area/bone length), cortical area (Ct.Ar), and tissue‐mineral density (TMD). These three traits explained 69% to 72% of the variation in tibial stiffness ( p  < 0.0001). Having reduced stiffness relative to body size (body weight × bone length) was associated with odds ratios of 1.5 (95% confidence interval [CI], 0.5–4.3) and 7.0 (95% CI, 2.0–25.1) for women and men, respectively, for developing a stress fracture based on radiography and scintigraphy. K‐means cluster analysis was used to segregate men and women into subgroups based on robustness, Ct.Ar, and TMD adjusted for body size. Stiffness varied 37% to 42% among the clusters ( p  < 0.0001, ANOVA). For men, 78% of stress fracture cases segregated to three clusters ( p  < 0.03, chi‐square). Clusters showing reduced function exhibited either slender tibias with the expected Ct.Ar and TMD relative to body size and robustness (ie, well‐adapted bones) or robust tibias with reduced residuals for Ct.Ar or TMD relative to body size and robustness (ie, poorly adapted bones). Thus, we show there are multiple biomechanical and thus biological pathways leading to reduced function and increased fracture risk. Our results have important implications for developing personalized preventative diagnostics and treatments.en_US
dc.publisherThe University of Chicago Press Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherFUNCTIONAL ADAPTATIONen_US
dc.subject.otherBIOMECHANICSen_US
dc.subject.otherTIBIAen_US
dc.subject.otherADULTen_US
dc.subject.otherSTRESS FRACTURESen_US
dc.titleVariation in tibial functionality and fracture susceptibility among healthy, young adults arises from the acquisition of biologically distinct sets of traitsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialitiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23362125en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98270/1/jbmr1879.pdf
dc.identifier.doi10.1002/jbmr.1879en_US
dc.identifier.sourceJournal of Bone and Mineral Researchen_US
dc.identifier.citedreferencePeterman MM, Hamel AJ, Cavanagh PR, Piazza SJ, Sharkey NA. In vitro modeling of human tibial strains during exercise in micro‐gravity. J Biomech. 2001; 34 ( 5 ): 693 – 8.en_US
dc.identifier.citedreferenceLandin L, Nilsson BE. Bone mineral content in children with fractures. Clin Orthop Relat Res. 1983; 178: 292 – 6.en_US
dc.identifier.citedreferenceMilgrom C, Giladi M, Simkin A, Rand N, Kedem R, Kashtan H, Stein M, Gomori M. The area moment of inertia of the tibia: a risk factor for stress fractures. J Biomech. 1989; 22 ( 11–12 ): 1243 – 8.en_US
dc.identifier.citedreferenceFranklyn M, Oakes B, Field B, Wells P, Morgan D. Section modulus is the optimum geometric predictor for stress fractures and medial tibial stress syndrome in both male and female athletes. Am J Sports Med. 2008; 36 ( 6 ): 1179 – 89.en_US
dc.identifier.citedreferenceJepsen KJ, Courtland H‐W, Nadeau JH. Genetically‐determined phenotype covariation networks control bone strength. J Bone Miner Res. 2010; 25 ( 7 ): 1581 – 93.en_US
dc.identifier.citedreferenceRivadeneira F, Zillikens MC, De Laet CE, Hofman A, Uitterlinden AG, Beck TJ, Pols HA. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study. J Bone Miner Res. 2007; 22 ( 11 ): 1781 – 90.en_US
dc.identifier.citedreferenceLaCroix AZ, Beck TJ, Cauley JA, Lewis CE, Bassford T, Jackson R, Wu G, Chen Z. Hip structural geometry and incidence of hip fracture in postmenopausal women: what does it add to conventional bone mineral density?. Osteoporos Int. 2010; 21 ( 6 ): 919 – 29.en_US
dc.identifier.citedreferenceBiewener AA. Safety factors in bone strength. Calcif Tissue Int. 1993; 53(Suppl 1): S68 – 74.en_US
dc.identifier.citedreferenceEvans RK, Negus C, Antczak AJ, Yanovich R, Israeli E, Moran DS. Sex differences in parameters of bone strength in new recruits: beyond bone density. Med Sci Sports Exerc. 2008; 40(11 Suppl): S645 – 53.en_US
dc.identifier.citedreferenceMoran DS, Israeli E, Evans RK, Yanovich R, Constantini N, Shabshin N, Merkel D, Luria O, Erlich T, Laor A, Finestone A. Prediction model for stress fracture in young female recruits during basic training. Med Sci Sports Exerc. 2008; 40(11 Suppl): S636 – 44.en_US
dc.identifier.citedreferenceFinestone A, Milgrom C, Evans R, Yanovich R, Constantini N, Moran DS. Overuse injuries in female infantry recruits during low‐intensity basic training. Med Sci Sports Exerc. 2008; 40(11 Suppl): S630 – 5.en_US
dc.identifier.citedreferenceMoran DS, Finestone A, Arbel Y, Shabshin N, Laor A. Simplified model to predict stress fracture in young elite combat recruits. J Strength Cond Res. 2011; 26 ( 9 ): 2585 – 92.en_US
dc.identifier.citedreferenceSelker F, Carter DR. Scaling of long bone fracture strength with animal mass. J Biomech. 1989; 22 ( 11–12 ): 1175 – 83.en_US
dc.identifier.citedreferencevan der Meulen MC, Ashford MW Jr, Kiratli BJ, Bachrach LK, Carter DR. Determinants of femoral geometry and structure during adolescent growth. J Orthop Res. 1996; 14 ( 1 ): 22 – 9.en_US
dc.identifier.citedreferenceRuff C. Growth in bone strength, body size, and muscle size in a juvenile longitudinal sample. Bone. 2003; 33 ( 3 ): 317 – 29.en_US
dc.identifier.citedreferencePetit MA, Beck TJ, Shults J, Zemel BS, Foster BJ, Leonard MB. Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents. Bone. 2005; 36 ( 3 ): 568 – 76.en_US
dc.identifier.citedreferenceMacdonald HM, Cooper DM, McKay HA. Anterior‐posterior bending strength at the tibial shaft increases with physical activity in boys: evidence for non‐uniform geometric adaptation. Osteoporos Int. 2009; 20 ( 1 ): 61 – 70.en_US
dc.identifier.citedreferenceSumner DR, Andriacchi TP. Adaptation to differential loading: comparison of growth‐related changes in cross‐sectional properties of the human femur and humerus. Bone. 1996; 19 ( 2 ): 121 – 6.en_US
dc.identifier.citedreferenceRuff C. Growth tracking of femoral and humeral strength from infancy through late adolescence. Acta Paediatr. 2005; 94 ( 8 ): 1030 – 7.en_US
dc.identifier.citedreferenceWaddington CH. Canalization of development and the inheritance of acquired characters. Nature. 1942; 14: 563 – 5.en_US
dc.identifier.citedreferenceOlson EC, Miller RL. Morphological Integration. Chicago: The University of Chicago Press Ltd; 1958.en_US
dc.identifier.citedreferenceCheverud JM. Developmental integration and the evolution of pleiotropy. Am Zool. 1996; 36: 44 – 50.en_US
dc.identifier.citedreferenceNadeau JH, Burrage LC, Restivo J, Pao YH, Churchill G, Hoit BD. Pleiotropy, homeostasis, and functional networks based on assays of cardiovascular traits in genetically randomized populations. Genome Res. 2003; 13 ( 9 ): 2082 – 91.en_US
dc.identifier.citedreferenceMarder E, Goaillard JM. Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci. 2006; 7 ( 7 ): 563 – 74.en_US
dc.identifier.citedreferenceNowlan NC, Prendergast PJ. Evolution of mechanoregulation of bone growth will lead to non‐optimal bone phenotypes. J Theor Biol. 2005; 235 ( 3 ): 408 – 18.en_US
dc.identifier.citedreferenceFriedl KE. Biomedical research on health and performance of military women: accomplishments of the Defense Women's Health Research Program (DWHRP). J Womens Health (Larchmt). 2005; 14 ( 9 ): 764 – 802.en_US
dc.identifier.citedreferenceBeck TJ, Ruff CB, Mourtada FA, Shaffer RA, Maxwell‐Williams K, Kao GL, Sartoris DJ, Brodine S. Dual‐energy X‐ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits. J Bone Miner Res. 1996; 11 ( 5 ): 645 – 53.en_US
dc.identifier.citedreferenceBeck TJ, Ruff CB, Shaffer RA, Betsinger K, Trone DW, Brodine SK. Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone. 2000; 27 ( 3 ): 437 – 44.en_US
dc.identifier.citedreferenceSzulc P, Munoz F, Duboeuf F, Marchand F, Delmas PD. Low width of tubular bones is associated with increased risk of fragility fracture in elderly men—the MINOS study. Bone. 2006; 38 ( 4 ): 595 – 602.en_US
dc.identifier.citedreferenceDuan Y, Beck TJ, Wang XF, Seeman E. Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res. 2003; 18 ( 10 ): 1766 – 74.en_US
dc.identifier.citedreferenceTommasini SM, Nasser P, Schaffler MB, Jepsen KJ. Relationship between bone morphology and bone quality in male tibias: implications for stress fracture risk. J Bone Miner Res. 2005; 20 ( 8 ): 1372 – 80.en_US
dc.identifier.citedreferenceTommasini SM, Nasser P, Hu B, Jepsen KJ. Biological co‐adaptation of morphological and composition traits contributes to mechanical functionality and skeletal fragility. J Bone Miner Res. 2008; 23 ( 2 ): 236 – 46.en_US
dc.identifier.citedreferenceTommasini SM, Nasser P, Jepsen KJ. Sexual dimorphism affects tibia size and shape but not tissue‐level mechanical properties. Bone. 2007; 40 ( 2 ): 498 – 505.en_US
dc.identifier.citedreferencePandey N, Bhola S, Goldstone A, Chen F, Chrzanowski J, Terranova CJ, Ghillani R, Jepsen KJ. Inter‐individual variation in functionally adapted trait sets is established during post‐natal growth and predictable based on bone robusticity. J Bone Miner Res. 2009; 24 ( 12 ): 1969 – 80.en_US
dc.identifier.citedreferenceBhola S, Chen J, Fusco J, Duarte GF, Andarawis‐Puri N, Ghillani R, Jepsen KJ. Variation in childhood skeletal robustness is an important determinant of cortical area in young adults. Bone. 2011; 49 ( 4 ): 799 – 809.en_US
dc.identifier.citedreferenceJepsen KJ, Centi A, Duarte GF, Galloway K, Goldman H, Hampson N, Lappe JM, Cullen DM, Greeves J, Izard R, Nindl BC, Kraemer WJ, Negus CH, Evans RK. Biological constraints that limit compensation of a common skeletal trait variant lead to inequivalence of tibial function among healthy young adults. J Bone Miner Res. 2011; 26 ( 12 ): 2872 – 5.en_US
dc.identifier.citedreferenceAlbright F, Smith PH, Richardson AM. Post‐menopausal osteoporosis. Its clinical features. JAMA. 1941; 116: 2465 – 74.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.