Li 4 Ti 5 O 12 Nanocrystals Synthesized by Carbon Templating from Solution Precursors Yield High Performance Thin Film Li‐Ion Battery Electrodes
dc.contributor.author | Hao, Xiaoguang | en_US |
dc.contributor.author | Bartlett, Bart M. | en_US |
dc.date.accessioned | 2013-06-18T18:33:02Z | |
dc.date.available | 2014-08-01T19:11:33Z | en_US |
dc.date.issued | 2013-06 | en_US |
dc.identifier.citation | Hao, Xiaoguang; Bartlett, Bart M. (2013). "Li 4 Ti 5 O 12 Nanocrystals Synthesized by Carbon Templating from Solution Precursors Yield High Performance Thin Film Li‐Ion Battery Electrodes." Advanced Energy Materials 3(6): 753-761. <http://hdl.handle.net/2027.42/98313> | en_US |
dc.identifier.issn | 1614-6832 | en_US |
dc.identifier.issn | 1614-6840 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/98313 | |
dc.description.abstract | Nanocrystals of Li 4 Ti 5 O 12 (LTO) have been prepared by processing an ethanol‐toluene solution of LiOEt and Ti(OiPr) 4 using a carbon black template. The mechanism of crystal growth has been tracked by SEM and TEM microscopies. The resulting nanocrystals grown using the carbon template (C‐LTO) show less aggregation than materials prepared from solution without the template (S‐LTO), which is reflected in higher surface area (27 m 2 /g) and concomitantly smaller particle size (58 nm) for C‐LTO compared to 20 m 2 /g and 201 nm for S‐LTO. Electrochemically, thin‐film electrodes composed of C‐LTO demonstrate reversible cycling, storing ∼160 mAh/g at both 1 C (175 mA/g) and 10 C current. Important is that resistance to charge transfer between the C‐LTO nanocrystals and added conducting carbon is 3 times smaller than that for S‐LTO. Accordingly, C‐LTO shows excellent rate capability, maintaining an energy‐storage capacity >150 mAh/g even at 100 C current. These characteristics solidify C‐LTO a suitable replacement for carbon as a Li‐ion battery anode. High power Li 4 Ti 5 O 12 (LTO) nanocrystals can be synthesized by a carbon‐templating method for Li‐ion battery electrodes . These electrodes demonstrate reversible cycling of 160 mAh/g at both 1 C and 10 C current, and remains above 150 mAh/g even at 100 C. | en_US |
dc.publisher | WILEY‐VCH Verlag | en_US |
dc.subject.other | Thin‐Film Electrodes) | en_US |
dc.subject.other | (Anode | en_US |
dc.subject.other | Lithium‐Ion Battery | en_US |
dc.subject.other | Nanocrystal Growth | en_US |
dc.subject.other | Templated Synthesis | en_US |
dc.title | Li 4 Ti 5 O 12 Nanocrystals Synthesized by Carbon Templating from Solution Precursors Yield High Performance Thin Film Li‐Ion Battery Electrodes | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Materials Science and Engineering | en_US |
dc.subject.hlbtoplevel | Engineering | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Chemistry, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109‐1055 USA | en_US |
dc.contributor.affiliationum | Department of Chemistry, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109‐1055 USA. | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/98313/1/aenm_201200964_sm_suppl.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/98313/2/753_ftp.pdf | |
dc.identifier.doi | 10.1002/aenm.201200964 | en_US |
dc.identifier.source | Advanced Energy Materials | en_US |
dc.identifier.citedreference | M. Wilkening, R. Amade, W. Iwaniak, P. Heitjans, Phys. Chem. Chem. Phys. 2007, 9, 1239. | en_US |
dc.identifier.citedreference | X. Hao, M. H. Austin, B. M. Bartlett, Dalton Trans. 2012, 41, 8067. | en_US |
dc.identifier.citedreference | K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, J. Power Sources 1999, 81‐82, 300. | en_US |
dc.identifier.citedreference | L. Kavan, M. Grätzel, Electrochem. Solid‐State Lett. 2002, 5, A39. | en_US |
dc.identifier.citedreference | M. Wagemaker, D. R. Simon, E. M. Kelder, J. Schoonman, C. Ringpfeil, U. Haake, D. Lützenkirchen‐Hecht, R. Frahm, F. M. Mulder, Adv. Mater. 2006, 18, 3169. | en_US |
dc.identifier.citedreference | W. Weppner, R. Huggins, J. Electrochem. Soc. 1977, 124, 1569. | en_US |
dc.identifier.citedreference | J. R. Macdonald, L. D. Potter Jr. Solid State Ionics 1987, 23, 61. | en_US |
dc.identifier.citedreference | E. M. Sorensen, S. J. Barry, H.‐K. Jung, J. R. Rondinelli, J. T. Vaughey, K. R. Poeppelmeier, Chem. Mater. 2006, 18, 482. | en_US |
dc.identifier.citedreference | M. Wagemaker, E. R. H. van Eck, A. P. M. Kentgens, F. M. Mulder, J. Phys. Chem. B. 2009, 113, 224. | en_US |
dc.identifier.citedreference | J. Chen, L. Yang, S. Fang, S. I. Hirano, K. Tachibana, J. Power Sources 2012, 200, 59. | en_US |
dc.identifier.citedreference | J. Huang, Z. Jiang, Solid‐State Lett. 2008, 11, A116. | en_US |
dc.identifier.citedreference | B. Smarsly, D. Grosso, T. Brezesinski, N. Pinna, C. Boissière, M. Antonietti, C. Sanchez, Chem. Mater. 2004, 16, 2948. | en_US |
dc.identifier.citedreference | L. Cheng, X. L. Li, Liu, J. H. H. M. Xiong, P. W. Zhang, Y. Y. Xia, 2007, 154, A692. | en_US |
dc.identifier.citedreference | X. Chen, X. Guan, L. Li, G. Li, J. Power Sources 2012, 210, 297. | en_US |
dc.identifier.citedreference | Y. Wang, H. Liu, K. Wang, H. Eiji, Y. Wang, H. Zhou, J. Mater. Chem. 2009, 19, 6789. | en_US |
dc.identifier.citedreference | D. Gonbeau, C. Guimon, G. Pfister‐Guillouzo, Surf. Sci. 1991, 254, 81. | en_US |
dc.identifier.citedreference | R. P. Vasquez, J. Electron Spectrosc. Relat. Phemon. 1991, 56, 217. | en_US |
dc.identifier.citedreference | M. Q. Snyder, W. J. DeSisto, C. P. Tripp, App. Surf. Sci. 2007, 253, 9336. | en_US |
dc.identifier.citedreference | B. A. Boukamp, Solid State Ionics. 1986, 20, 31. | en_US |
dc.identifier.citedreference | N. He, B. Wang, J. Huang, J. Solid State Electrochem. 2010, 14, 1241. | en_US |
dc.identifier.citedreference | H.‐G. Jung, M. W. Jang, J. Hassoun, Y.‐K. Sun, B. Scrosati, Nat. Commun. 2011, 2, 1. | en_US |
dc.identifier.citedreference | H.‐G. Jung, S.‐T. Myung, C. S. Yoon, S.‐B. Son, K. H. Oh, K. Amine, B. Scrosati, Y.‐K. Sun, Energy Environ. Sci. 2011, 4, 1345. | en_US |
dc.identifier.citedreference | G.‐N. Zhu, Y.‐G. Wang, Y.‐Y. Xia, Energy Environ. Sci. 2012, 5, 6652. | en_US |
dc.identifier.citedreference | J. Jiang, J. R. Dahn, J. Electrochem. Soc. 2006, 153, A310. | en_US |
dc.identifier.citedreference | L.‐F. Cui, R. Ruffo, C. K. Chan, H. Peng, Y. Cui, Nano Lett. 2009, 9, 491. | en_US |
dc.identifier.citedreference | J. Gu, S. M. Collins, A. I. Carim, X. Hao, B. M. Bartlett, S. Maldonado, Nano Lett. 2012, 12, 4617. | en_US |
dc.identifier.citedreference | K. M. Colbow, J. R. Dahn, R. R. Haering, J. Power Sources 1989, 26, 397. | en_US |
dc.identifier.citedreference | M. M. Thackeray, J. Electrochem. Soc. 1995, 142, 2558. | en_US |
dc.identifier.citedreference | F. Ronci, P. Peale, B. Scrosati, S. Panero, V. Rossi Albertini, P. Perfetti, M.di Michiel, J. M. Merino, J. Phys, Chem. B 2002, 106, 3082. | en_US |
dc.identifier.citedreference | L. Kavan, J. Rathousky, M. Grätzel, V. Shklover, A. Zukal, J. Phys. Chem. B. 2000, 104, 12012. | en_US |
dc.identifier.citedreference | C. H. Chen, J. T. Vaughey, A. N. Jansen, D. W. Dees, A. J. Kahaian, T. Goacher, M. M. Thackeray, J. Electrochem. Soc. 2001, 148, A102. | en_US |
dc.identifier.citedreference | L. Kavan, J. Procházka, T. M. Spitler, M. Kalbáč, M. Zukalová, T. Drezen, M. Grätzel, J. Electrochem. Soc. 2003, 150, A1000. | en_US |
dc.identifier.citedreference | J. Li, Z. Tang, Z. Zhang, Electrochem. Commun. 2005, 7, 894. | en_US |
dc.identifier.citedreference | A. S. Aricò, P. Bruce, B. Scrosati, J.‐M. Tarascon, W. van Schalkwijk, Nature Mater. 2005, 4, 366 – 377. | en_US |
dc.identifier.citedreference | K. Naoi, W. Naoi, S. Aoyagi, J. Miyamoto, T. Kamino, Acc. Chem. Res. 2012, DOI: 10.1021/ar200308. | en_US |
dc.identifier.citedreference | K. Naoi, S. Ishimoto, Y. Isobe, S. Aoyagi, J. Power Sources 2010, 195, 6250. | en_US |
dc.identifier.citedreference | Y. Tang, F. Huang, W. Zhao, Z. Liu, D. Wan, J. Mater. Chem. 2012, 22, 11257. | en_US |
dc.identifier.citedreference | B. Zhang, Y. Liu, Z. Huang, S. Oh, Y. Yu, Y.‐W. Mai, J.‐K. Kim, J. Mater. Chem. 2012, 22, 12133. | en_US |
dc.identifier.citedreference | H.‐K. Kim, S.‐M. Bak, K.‐B. Kim, Electrochem. Commun. 2010, 12, 1768. | en_US |
dc.identifier.citedreference | Y.‐Q. Wang, L. Gu, Y.‐G. Guo, H. Li, X.‐Q. He, S. Tsukimoto, Y. Ikuhara, L.‐J. Wan, J. Am. Chem. Soc. 2012, 134, 7874. | en_US |
dc.identifier.citedreference | Y. F. Tang, L. Yang, Z. Qiu, J. S. Huang, Electrochem. Commun. 2008, 10, 1513. | en_US |
dc.identifier.citedreference | J. Kim, J. Cho, Solid‐State Lett. 2007, 10, A81. | en_US |
dc.identifier.citedreference | S.‐L. Chou, J.‐Z. Wang, H.‐K. Liu, S.‐X. Dou, J. Phys. Chem. C. 2011, 115, 16220. | en_US |
dc.identifier.citedreference | D. H. Kim, Y. S. Ahn, J. Kim, Electrochem. Commun. 2005, 7, 1340. | en_US |
dc.identifier.citedreference | Y. Hao, Q. Lai, Z. Xu, X. Liu, X. Ji, Solid State Ionics 2005, 176, 1201. | en_US |
dc.identifier.citedreference | Y. H. Rho, K. Kanamura, J. Solid State Chem. 2004, 177, 2094. | en_US |
dc.identifier.citedreference | K. Kanamura, N. Akutagawa, K. Dokko, J. Power Sources 2005, 146, 86. | en_US |
dc.identifier.citedreference | J. M. Feckl, K. Fominykh, M. Döblinger, D. F.‐Rohlfing, T. Bein, Angew. Chem. Int. Ed. 2012, 51, 7459. | en_US |
dc.identifier.citedreference | C. M. Julien, M. Massot, K. Zaghib, J. Power Sources 2004, 136, 72. | en_US |
dc.identifier.citedreference | M. M. Thackeray, J. Am. Ceram. Soc. 1999, 82, 3347. | en_US |
dc.identifier.citedreference | P. Scherrer, Göttinger Nachrichtern Gesell. 1918, 2, 98. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.