Show simple item record

Li 4 Ti 5 O 12 Nanocrystals Synthesized by Carbon Templating from Solution Precursors Yield High Performance Thin Film Li‐Ion Battery Electrodes

dc.contributor.authorHao, Xiaoguangen_US
dc.contributor.authorBartlett, Bart M.en_US
dc.date.accessioned2013-06-18T18:33:02Z
dc.date.available2014-08-01T19:11:33Zen_US
dc.date.issued2013-06en_US
dc.identifier.citationHao, Xiaoguang; Bartlett, Bart M. (2013). "Li 4 Ti 5 O 12 Nanocrystals Synthesized by Carbon Templating from Solution Precursors Yield High Performance Thin Film Li‐Ion Battery Electrodes." Advanced Energy Materials 3(6): 753-761. <http://hdl.handle.net/2027.42/98313>en_US
dc.identifier.issn1614-6832en_US
dc.identifier.issn1614-6840en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98313
dc.description.abstractNanocrystals of Li 4 Ti 5 O 12 (LTO) have been prepared by processing an ethanol‐toluene solution of LiOEt and Ti(OiPr) 4 using a carbon black template. The mechanism of crystal growth has been tracked by SEM and TEM microscopies. The resulting nanocrystals grown using the carbon template (C‐LTO) show less aggregation than materials prepared from solution without the template (S‐LTO), which is reflected in higher surface area (27 m 2 /g) and concomitantly smaller particle size (58 nm) for C‐LTO compared to 20 m 2 /g and 201 nm for S‐LTO. Electrochemically, thin‐film electrodes composed of C‐LTO demonstrate reversible cycling, storing ∼160 mAh/g at both 1 C (175 mA/g) and 10 C current. Important is that resistance to charge transfer between the C‐LTO nanocrystals and added conducting carbon is 3 times smaller than that for S‐LTO. Accordingly, C‐LTO shows excellent rate capability, maintaining an energy‐storage capacity >150 mAh/g even at 100 C current. These characteristics solidify C‐LTO a suitable replacement for carbon as a Li‐ion battery anode. High power Li 4 Ti 5 O 12 (LTO) nanocrystals can be synthesized by a carbon‐templating method for Li‐ion battery electrodes . These electrodes demonstrate reversible cycling of 160 mAh/g at both 1 C and 10 C current, and remains above 150 mAh/g even at 100 C.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherThin‐Film Electrodes)en_US
dc.subject.other(Anodeen_US
dc.subject.otherLithium‐Ion Batteryen_US
dc.subject.otherNanocrystal Growthen_US
dc.subject.otherTemplated Synthesisen_US
dc.titleLi 4 Ti 5 O 12 Nanocrystals Synthesized by Carbon Templating from Solution Precursors Yield High Performance Thin Film Li‐Ion Battery Electrodesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109‐1055 USAen_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109‐1055 USA.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98313/1/aenm_201200964_sm_suppl.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98313/2/753_ftp.pdf
dc.identifier.doi10.1002/aenm.201200964en_US
dc.identifier.sourceAdvanced Energy Materialsen_US
dc.identifier.citedreferenceM. Wilkening, R. Amade, W. Iwaniak, P. Heitjans, Phys. Chem. Chem. Phys. 2007, 9, 1239.en_US
dc.identifier.citedreferenceX. Hao, M. H. Austin, B. M. Bartlett, Dalton Trans. 2012, 41, 8067.en_US
dc.identifier.citedreferenceK. Zaghib, M. Simoneau, M. Armand, M. Gauthier, J. Power Sources 1999, 81‐82, 300.en_US
dc.identifier.citedreferenceL. Kavan, M. Grätzel, Electrochem. Solid‐State Lett. 2002, 5, A39.en_US
dc.identifier.citedreferenceM. Wagemaker, D. R. Simon, E. M. Kelder, J. Schoonman, C. Ringpfeil, U. Haake, D. Lützenkirchen‐Hecht, R. Frahm, F. M. Mulder, Adv. Mater. 2006, 18, 3169.en_US
dc.identifier.citedreferenceW. Weppner, R. Huggins, J. Electrochem. Soc. 1977, 124, 1569.en_US
dc.identifier.citedreferenceJ. R. Macdonald, L. D. Potter Jr. Solid State Ionics 1987, 23, 61.en_US
dc.identifier.citedreferenceE. M. Sorensen, S. J. Barry, H.‐K. Jung, J. R. Rondinelli, J. T. Vaughey, K. R. Poeppelmeier, Chem. Mater. 2006, 18, 482.en_US
dc.identifier.citedreferenceM. Wagemaker, E. R. H. van Eck, A. P. M. Kentgens, F. M. Mulder, J. Phys. Chem. B. 2009, 113, 224.en_US
dc.identifier.citedreferenceJ. Chen, L. Yang, S. Fang, S. I. Hirano, K. Tachibana, J. Power Sources 2012, 200, 59.en_US
dc.identifier.citedreferenceJ. Huang, Z. Jiang, Solid‐State Lett. 2008, 11, A116.en_US
dc.identifier.citedreferenceB. Smarsly, D. Grosso, T. Brezesinski, N. Pinna, C. Boissière, M. Antonietti, C. Sanchez, Chem. Mater. 2004, 16, 2948.en_US
dc.identifier.citedreferenceL. Cheng, X. L. Li, Liu, J. H. H. M. Xiong, P. W. Zhang, Y. Y. Xia, 2007, 154, A692.en_US
dc.identifier.citedreferenceX. Chen, X. Guan, L. Li, G. Li, J. Power Sources 2012, 210, 297.en_US
dc.identifier.citedreferenceY. Wang, H. Liu, K. Wang, H. Eiji, Y. Wang, H. Zhou, J. Mater. Chem. 2009, 19, 6789.en_US
dc.identifier.citedreferenceD. Gonbeau, C. Guimon, G. Pfister‐Guillouzo, Surf. Sci. 1991, 254, 81.en_US
dc.identifier.citedreferenceR. P. Vasquez, J. Electron Spectrosc. Relat. Phemon. 1991, 56, 217.en_US
dc.identifier.citedreferenceM. Q. Snyder, W. J. DeSisto, C. P. Tripp, App. Surf. Sci. 2007, 253, 9336.en_US
dc.identifier.citedreferenceB. A. Boukamp, Solid State Ionics. 1986, 20, 31.en_US
dc.identifier.citedreferenceN. He, B. Wang, J. Huang, J. Solid State Electrochem. 2010, 14, 1241.en_US
dc.identifier.citedreferenceH.‐G. Jung, M. W. Jang, J. Hassoun, Y.‐K. Sun, B. Scrosati, Nat. Commun. 2011, 2, 1.en_US
dc.identifier.citedreferenceH.‐G. Jung, S.‐T. Myung, C. S. Yoon, S.‐B. Son, K. H. Oh, K. Amine, B. Scrosati, Y.‐K. Sun, Energy Environ. Sci. 2011, 4, 1345.en_US
dc.identifier.citedreferenceG.‐N. Zhu, Y.‐G. Wang, Y.‐Y. Xia, Energy Environ. Sci. 2012, 5, 6652.en_US
dc.identifier.citedreferenceJ. Jiang, J. R. Dahn, J. Electrochem. Soc. 2006, 153, A310.en_US
dc.identifier.citedreferenceL.‐F. Cui, R. Ruffo, C. K. Chan, H. Peng, Y. Cui, Nano Lett. 2009, 9, 491.en_US
dc.identifier.citedreferenceJ. Gu, S. M. Collins, A. I. Carim, X. Hao, B. M. Bartlett, S. Maldonado, Nano Lett. 2012, 12, 4617.en_US
dc.identifier.citedreferenceK. M. Colbow, J. R. Dahn, R. R. Haering, J. Power Sources 1989, 26, 397.en_US
dc.identifier.citedreferenceM. M. Thackeray, J. Electrochem. Soc. 1995, 142, 2558.en_US
dc.identifier.citedreferenceF. Ronci, P. Peale, B. Scrosati, S. Panero, V. Rossi Albertini, P. Perfetti, M.di Michiel, J. M. Merino, J. Phys, Chem. B 2002, 106, 3082.en_US
dc.identifier.citedreferenceL. Kavan, J. Rathousky, M. Grätzel, V. Shklover, A. Zukal, J. Phys. Chem. B. 2000, 104, 12012.en_US
dc.identifier.citedreferenceC. H. Chen, J. T. Vaughey, A. N. Jansen, D. W. Dees, A. J. Kahaian, T. Goacher, M. M. Thackeray, J. Electrochem. Soc. 2001, 148, A102.en_US
dc.identifier.citedreferenceL. Kavan, J. Procházka, T. M. Spitler, M. Kalbáč, M. Zukalová, T. Drezen, M. Grätzel, J. Electrochem. Soc. 2003, 150, A1000.en_US
dc.identifier.citedreferenceJ. Li, Z. Tang, Z. Zhang, Electrochem. Commun. 2005, 7, 894.en_US
dc.identifier.citedreferenceA. S. Aricò, P. Bruce, B. Scrosati, J.‐M. Tarascon, W. van Schalkwijk, Nature Mater. 2005, 4, 366 – 377.en_US
dc.identifier.citedreferenceK. Naoi, W. Naoi, S. Aoyagi, J. Miyamoto, T. Kamino, Acc. Chem. Res. 2012, DOI: 10.1021/ar200308.en_US
dc.identifier.citedreferenceK. Naoi, S. Ishimoto, Y. Isobe, S. Aoyagi, J. Power Sources 2010, 195, 6250.en_US
dc.identifier.citedreferenceY. Tang, F. Huang, W. Zhao, Z. Liu, D. Wan, J. Mater. Chem. 2012, 22, 11257.en_US
dc.identifier.citedreferenceB. Zhang, Y. Liu, Z. Huang, S. Oh, Y. Yu, Y.‐W. Mai, J.‐K. Kim, J. Mater. Chem. 2012, 22, 12133.en_US
dc.identifier.citedreferenceH.‐K. Kim, S.‐M. Bak, K.‐B. Kim, Electrochem. Commun. 2010, 12, 1768.en_US
dc.identifier.citedreferenceY.‐Q. Wang, L. Gu, Y.‐G. Guo, H. Li, X.‐Q. He, S. Tsukimoto, Y. Ikuhara, L.‐J. Wan, J. Am. Chem. Soc. 2012, 134, 7874.en_US
dc.identifier.citedreferenceY. F. Tang, L. Yang, Z. Qiu, J. S. Huang, Electrochem. Commun. 2008, 10, 1513.en_US
dc.identifier.citedreferenceJ. Kim, J. Cho, Solid‐State Lett. 2007, 10, A81.en_US
dc.identifier.citedreferenceS.‐L. Chou, J.‐Z. Wang, H.‐K. Liu, S.‐X. Dou, J. Phys. Chem. C. 2011, 115, 16220.en_US
dc.identifier.citedreferenceD. H. Kim, Y. S. Ahn, J. Kim, Electrochem. Commun. 2005, 7, 1340.en_US
dc.identifier.citedreferenceY. Hao, Q. Lai, Z. Xu, X. Liu, X. Ji, Solid State Ionics 2005, 176, 1201.en_US
dc.identifier.citedreferenceY. H. Rho, K. Kanamura, J. Solid State Chem. 2004, 177, 2094.en_US
dc.identifier.citedreferenceK. Kanamura, N. Akutagawa, K. Dokko, J. Power Sources 2005, 146, 86.en_US
dc.identifier.citedreferenceJ. M. Feckl, K. Fominykh, M. Döblinger, D. F.‐Rohlfing, T. Bein, Angew. Chem. Int. Ed. 2012, 51, 7459.en_US
dc.identifier.citedreferenceC. M. Julien, M. Massot, K. Zaghib, J. Power Sources 2004, 136, 72.en_US
dc.identifier.citedreferenceM. M. Thackeray, J. Am. Ceram. Soc. 1999, 82, 3347.en_US
dc.identifier.citedreferenceP. Scherrer, Göttinger Nachrichtern Gesell. 1918, 2, 98.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.