Show simple item record

Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue‐triggered ‘wanting’ for reward: entire core and medial shell mapped as substrates for PIT enhancement

dc.contributor.authorPeciña, Susanaen_US
dc.contributor.authorBerridge, Kent C.en_US
dc.date.accessioned2013-06-18T18:33:05Z
dc.date.available2014-07-01T15:53:22Zen_US
dc.date.issued2013-05en_US
dc.identifier.citationPeciña, Susana ; Berridge, Kent C. (2013). "Dopamine or opioid stimulation of nucleus accumbens similarly amplify cueâ triggered â wantingâ for reward: entire core and medial shell mapped as substrates for PIT enhancement." European Journal of Neuroscience 37(9): 1529-1540. <http://hdl.handle.net/2027.42/98326>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98326
dc.description.abstractPavlovian cues [conditioned stimulus ( CS +)] often trigger intense motivation to pursue and consume related reward [unconditioned stimulus ( UCS )]. But cues do not always trigger the same intensity of motivation. Encountering a reward cue can be more tempting on some occasions than on others. What makes the same cue trigger more intense motivation to pursue reward on a particular encounter? The answer may be the level of incentive salience (‘wanting’) that is dynamically generated by mesocorticolimbic brain systems, influenced especially by dopamine and opioid neurotransmission in the nucleus accumbens ( NA c) at that moment. We tested the ability of dopamine stimulation (by amphetamine microinjection) vs. mu opioid stimulation [by d‐Ala, nMe‐Phe, Glyol‐enkephalin ( DAMGO ) microinjection] of either the core or shell of the NA c to amplify cue‐triggered levels of motivation to pursue sucrose reward, measured with a Pavlovian‐Instrumental Transfer ( PIT ) procedure, a relatively pure assay of incentive salience. Cue‐triggered ‘wanting’ in PIT was enhanced by amphetamine or DAMGO microinjections equally, and also equally at nearly all sites throughout the entire core and medial shell (except for a small far‐rostral strip of shell). NA c dopamine/opioid stimulations specifically enhanced CS + ability to trigger phasic peaks of ‘wanting’ to obtain UCS , without altering baseline efforts when CS + was absent. We conclude that dopamine/opioid stimulation throughout nearly the entire NA c can causally amplify the reactivity of mesocorticolimbic circuits, and so magnify incentive salience or phasic UCS ‘wanting’ peaks triggered by a CS +. Mesolimbic amplification of incentive salience may explain why a particular cue encounter can become irresistibly tempting, even when previous encounters were successfully resisted before. Surges in the level of motivation elicited by reward cues (i.e., changes cue‐triggered ‘wanting’) are mediated by opioid and‐or dopamine stimulations that increase reactivity of mesocorticolimbic brain circuits involving the nucleus accumbens, which dynamically compute incentive salience for a cue. Nearly the entire medial shell and the entire core can similarly mediate dopamine and opioid enhancements.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherRodale Press (Macmillan)en_US
dc.subject.otherMotivationen_US
dc.subject.otherRaten_US
dc.subject.otherFos Mappingen_US
dc.subject.otherLikingen_US
dc.subject.otherAmphetamineen_US
dc.subject.otherDAMGOen_US
dc.titleDopamine or opioid stimulation of nucleus accumbens similarly amplify cue‐triggered ‘wanting’ for reward: entire core and medial shell mapped as substrates for PIT enhancementen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23495790en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98326/1/ejn12174.pdf
dc.identifier.doi10.1111/ejn.12174en_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceSaddoris, M.P., Stamatakis, A. & Carelli, R.M. ( 2011 ) Neural correlates of Pavlovian‐to‐instrumental transfer in the nucleus accumbens shell are selectively potentiated following cocaine self‐administration. Eur. J. Neurosci., 33, 2274 – 2287.en_US
dc.identifier.citedreferenceSaunders, B.T. & Robinson, T.E. ( 2012 ) The role of dopamine in the accumbens core in the expression of Pavlovian‐conditioned responses. Eur. J. Neurosci., 36, 2521 – 32.en_US
dc.identifier.citedreferenceShiflett, M.W. & Balleine, B.W. ( 2010 ) At the limbic‐motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation. Eur. J. Neurosci., 32, 1735 – 1743.en_US
dc.identifier.citedreferenceShin, A.C., Pistell, P.J., Phifer, C.B. & Berthoud, H.R. ( 2010 ) Reversible suppression of food reward behavior by chronic mu‐opioid receptor antagonism in the nucleus accumbens. Neuroscience, 170, 580 – 588.en_US
dc.identifier.citedreferenceSmith, K.S. & Berridge, K.C. ( 2005 ) The ventral pallidum and hedonic reward: neurochemical maps of sucrose “liking” and food intake. J. Neurosci., 25, 8637 – 8649.en_US
dc.identifier.citedreferenceSmith, K.S., Berridge, K.C. & Aldridge, J.W. ( 2011 ) Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc. Natl. Acad. Sci. USA, 108, 255 – 264.en_US
dc.identifier.citedreferenceTaha, S.A., Katsuura, Y., Noorvash, D., Seroussi, A. & Fields, H.L. ( 2009 ) Convergent, not serial, striatal and pallidal circuits regulate opioid‐induced food intake. Neuroscience, 161, 718 – 733.en_US
dc.identifier.citedreferenceTalmi, D., Seymour, B., Dayan, P. & Dolan, R. ( 2008 ) Human pavlovian‐instrumental transfer. J. Neurosci., 28, 360 – 368.en_US
dc.identifier.citedreferenceThompson, R.H. & Swanson, L.W. ( 2010 ) Hypothesis‐driven structural connectivity analysis supports network over hierarchical model of brain architecture. Proc. Natl. Acad. Sci. USA, 107, 15235 – 15239.en_US
dc.identifier.citedreferenceTindell, A.J., Smith, K.S., Berridge, K.C. & Aldridge, J.W. ( 2009 ) Dynamic computation of incentive salience: “wanting” what was never “liked”. J. Neurosci., 29, 12220 – 12228.en_US
dc.identifier.citedreferenceVan Ree, J.M., Niesink, R.J., Van Wolfswinkel, L., Ramsey, N.F., Kornet, M.M., Van Furth, W.R., Vanderschuren, L.J., Gerrits, M.A. & Van den Berg, C.L. ( 2000 ) Endogenous opioids and reward. Eur. J. Pharmacol., 405, 89 – 101.en_US
dc.identifier.citedreferenceVanderschuren, L.J. & Pierce, R.C. ( 2010 ) Sensitization processes in drug addiction. Curr. Top. Behav. Neurosci., 3, 179 – 195.en_US
dc.identifier.citedreferenceVolkow, N.D., Fowler, J.S. & Wang, G.J. ( 2004 ) The addicted human brain viewed in the light of imaging studies: brain circuits and treatment strategies. Neuropharmacology, 47, 3 – 13.en_US
dc.identifier.citedreferenceVoorn, P., Gerfen, C.R. & Groenewegen, H.J. ( 1989 ) Compartmental organization of the ventral striatum of the rat: immunohistochemical distribution of enkephalin, substance P, dopamine, and calcium‐binding protein. J. Comp. Neurol., 289, 189 – 201.en_US
dc.identifier.citedreferenceWalker, K.C. ( 1942 ) The effect of a discriminative stimulus transferred to a previously unassociated response. J. Exp. Psychol., 31, 312 – 321.en_US
dc.identifier.citedreferenceWassum, K.M., Ostlund, S.B., Balleine, B.W. & Maidment, N.T. ( 2011 ) Differential dependence of Pavlovian incentive motivation and instrumental incentive learning processes on dopamine signaling. Learn. Memory, 18, 475 – 483.en_US
dc.identifier.citedreferenceWyvell, C.L. & Berridge, K.C. ( 2000 ) Intra‐accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J. Neurosci., 20, 8122 – 8130.en_US
dc.identifier.citedreferenceWyvell, C.L. & Berridge, K.C. ( 2001 ) Incentive‐sensitization by previous amphetamine exposure: Increased cue‐triggered ‘wanting’ for sucrose reward. J. Neurosci., 21, 7831 – 7840.en_US
dc.identifier.citedreferenceZahm, D.S. & Brog, J.S. ( 1992 ) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience, 50, 751 – 767.en_US
dc.identifier.citedreferenceZahm, D.S., Parsley, K.P., Schwartz, Z.M. & Cheng, A.Y. ( 2012 ) On lateral septum‐like characteristics of outputs from the accumbal hedonic ‘hotspot’ of Pecina and Berridge with commentary on the transitional nature of basal forebrain ‘boundaries’. J. Comp. Neurol., 521, 50 – 68.en_US
dc.identifier.citedreferenceZhang, M. & Kelley, A.E. ( 2002 ) Intake of saccharin, salt, and ethanol solutions is increased by infusion of a mu opioid agonist into the nucleus accumbens. Psychopharmacology, 159, 415 – 423.en_US
dc.identifier.citedreferenceZhang, M., Balmadrid, C. & Kelley, A.E. ( 2003 ) Nucleus accumbens opioid, GABaergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat. Behav. Neurosci., 117, 202 – 211.en_US
dc.identifier.citedreferenceZhang, J., Berridge, K.C., Tindell, A.J., Smith, K.S. & Aldridge, J.W. ( 2009 ) A neural computational model of incentive salience. PLoS Comput. Biol., 5, e1000437.en_US
dc.identifier.citedreferenceAmbroggi, F., Ghazizadeh, A., Nicola, S.M. & Fields, H.L. ( 2011 ) Roles of nucleus accumbens core and shell in incentive‐cue responding and behavioral inhibition. J. Neurosci., 31, 6820 – 6830.en_US
dc.identifier.citedreferenceBakshi, V.P. & Kelley, A.E. ( 1993 ) Striatal regulation of morphine‐induced hyperphagia: an anatomical mapping study. Psychopharmacology, 111, 207 – 214.en_US
dc.identifier.citedreferenceBaldo, B.A. & Kelley, A.E. ( 2007 ) Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology, 191, 439 – 459.en_US
dc.identifier.citedreferenceBarbano, M.F., Le Saux, M. & Cador, M. ( 2009 ) Involvement of dopamine and opioids in the motivation to eat: influence of palatability, homeostatic state, and behavioral paradigms. Psychopharmacology, 203, 475 – 487.en_US
dc.identifier.citedreferenceBerridge, C.W., Stratford, T.L., Foote, S.L. & Kelley, A.E. ( 1997 ) Distribution of dopamine beta‐hydroxylase‐like immunoreactive fibers within the shell subregion of the nucleus accumbens. Synapse, 27, 230 – 241.en_US
dc.identifier.citedreferenceBerridge, K.C. ( 2012 ) From prediction error to incentive salience: mesolimbic computation of reward motivation. Eur. J. Neurosci., 35, 1124 – 1143.en_US
dc.identifier.citedreferenceBerthoud, H.R. & Morrison, C. ( 2008 ) The brain, appetite, and obesity. Annu. Rev. Psychol., 59, 55 – 92.en_US
dc.identifier.citedreferenceBodnar, R.J. ( 2004 ) Endogenous opioids and feeding behavior: a 30‐year historical perspective. Peptides, 25, 697 – 725.en_US
dc.identifier.citedreferenceBray, S., Rangel, A., Shimojo, S., Balleine, B. & O'Doherty, J.P. ( 2008 ) The neural mechanisms underlying the influence of pavlovian cues on human decision making. J. Neurosci., 28, 5861 – 5866.en_US
dc.identifier.citedreferenceCacciapaglia, F., Saddoris, M.P., Wightman, R.M. & Carelli, R.M. ( 2012 ) Differential dopamine release dynamics in the nucleus accumbens core and shell track distinct aspects of goal‐directed behavior for sucrose. Neuropharmacology, 62, 2050 – 2056.en_US
dc.identifier.citedreferenceCardinal, R.N., Parkinson, J.A., Hall, J. & Everitt, B.J. ( 2002 ) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. R., 26, 321 – 352.en_US
dc.identifier.citedreferenceChaudhri, N., Sahuque, L.L., Schairer, W.W. & Janak, P.H. ( 2012 ) Separable roles of the nucleus accumbens core and shell in context‐ and cue‐induced alcohol‐seeking. Neuropsychopharmacol., 35, 783 – 791.en_US
dc.identifier.citedreferenceCorbit, L.H. & Balleine, B.W. ( 2005 ) Double Dissociation of Basolateral and Central Amygdala Lesions on the General and Outcome‐Specific Forms of Pavlovian‐Instrumental Transfer. J. Neurosci., 25, 962 – 970.en_US
dc.identifier.citedreferenceCorbit, L.H., Muir, J.L. & Balleine, B.W. ( 2001 ) The role of the nucleus accumbens in instrumental conditioning: Evidence of a functional dissociation between accumbens core and shell. J. Neurosci., 21, 3251 – 3260.en_US
dc.identifier.citedreferenceCorbit, L.H., Janak, P.H. & Balleine, B.W. ( 2007 ) General and outcome‐specific forms of Pavlovian‐instrumental transfer: the effect of shifts in motivational state and inactivation of the ventral tegmental area. Eur. J. Neurosci., 26, 3141 – 3149.en_US
dc.identifier.citedreferenceCrombag, H.S., Galarce, E.M. & Holland, P.C. ( 2008 ) Pavlovian influences on goal‐directed behavior in mice: the role of cue‐reinforcer relations. Learn. Memory, 15, 299 – 303.en_US
dc.identifier.citedreferenceDi Chiara, G., Bassareo, V., Fenu, S., De Luca, M.A., Spina, L., Cadoni, C., Acquas, E., Carboni, E., Valentini, V. & Lecca, D. ( 2004 ) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology, 47, 227 – 241.en_US
dc.identifier.citedreferenceDickinson, A., Smith, J. & Mirenowicz, J. ( 2000 ) Dissociation of Pavlovian and instrumental incentive learning under dopamine antagonists. Behav. Neurosci., 114, 468 – 483.en_US
dc.identifier.citedreferenceDiFeliceantonio, A.G. & Berridge, K.C. ( 2012 ) Which cue to ‘want’? Opioid stimulation of central amygdala makes goal‐trackers show stronger goal‐tracking, just as sign‐trackers show stronger sign‐tracking. Behav. Brain Res., 230, 399 – 408.en_US
dc.identifier.citedreferenceEstes, W.K. ( 1943 ) Discriminative conditioning. I. A discriminative property of conditioned anticipation. J. Exp. Psychol., 32, 150 – 155.en_US
dc.identifier.citedreferenceEveritt, B.J. & Robbins, T.W. ( 2005 ) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci., 8, 1481 – 1489.en_US
dc.identifier.citedreferenceEveritt, B.J. & Wolf, M.E. ( 2002 ) Psychomotor stimulant addiction: A neural systems perspective. J. Neurosci., 22, 3312 – 3320.en_US
dc.identifier.citedreferenceFarooqi, I.S. & O'Rahilly, S. ( 2009 ) Leptin: a pivotal regulator of human energy homeostasis. Am. J. Clin. Nutr., 89, 980S – 984S.en_US
dc.identifier.citedreferenceFarooqi, I.S., Bullmore, E., Keogh, J., Gillard, J., O'Rahilly, S. & Fletcher, P.C. ( 2007 ) Leptin regulates striatal regions and human eating behavior. Science, 317, 1355.en_US
dc.identifier.citedreferenceFaure, A., Richard, J.M. & Berridge, K.C. ( 2010 ) Desire and dread from the nucleus accumbens: cortical glutamate and subcortical GABA differentially generate motivation and hedonic impact in the rat. PLoS ONE, 5, e11223.en_US
dc.identifier.citedreferenceFlagel, S.B., Clark, J.J., Robinson, T.E., Mayo, L., Czuj, A., Willuhn, I., Akers, C.A., Clinton, S.M., Phillips, P.E. & Akil, H. ( 2011 ) A selective role for dopamine in stimulus‐reward learning. Nature, 469, 53 – 57.en_US
dc.identifier.citedreferenceHall, J., Parkinson, J.A., Connor, T.M., Dickinson, A. & Everitt, B.J. ( 2001 ) Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. Eur. J. Neurosci., 13, 1984 – 1992.en_US
dc.identifier.citedreferenceHolland, P.C. ( 2004 ) Relations between Pavlovian‐instrumental transfer and reinforcer devaluation. J. Exp. Psychol. Anim. B., 30, 104 – 117.en_US
dc.identifier.citedreferenceHolland, P.C. & Gallagher, M. ( 2003 ) Double dissociation of the effects of lesions of basolateral and central amygdala on conditioned stimulus‐potentiated feeding and Pavlovian‐instrumental transfer. Eur. J. Neurosci., 17, 1680 – 1694.en_US
dc.identifier.citedreferenceIkemoto, S. ( 2007 ) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens‐olfactory tubercle complex. Brain Res. Rev., 56, 27 – 78.en_US
dc.identifier.citedreferenceIkemoto, S. & Wise, R.A. ( 2004 ) Mapping of chemical trigger zones for reward. Neuropharmacology, 47 ( Suppl 1 ), 190 – 201.en_US
dc.identifier.citedreferenceKelley, A.E. ( 2004 ) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward‐related learning. Neurosci. Biobehav. R., 27, 765 – 776.en_US
dc.identifier.citedreferenceKelley, A.E., Baldo, B.A., Pratt, W.E. & Will, M.J. ( 2005 ) Corticostriatal‐hypothalamic circuitry and food motivation: Integration of energy, action and reward. Physiol. Behav., 86, 773 – 795.en_US
dc.identifier.citedreferenceKessler, D.A. ( 2009 ) The End of Overeating: Taking Control of the Insatiable American Appetite. Rodale Press (Macmillan), New York.en_US
dc.identifier.citedreferenceKim, E.M., Quinn, J.G., Levine, A.S. & O'Hare, E. ( 2004 ) A bi‐directional mu‐opioid‐opioid connection between the nucleus of the accumbens shell and the central nucleus of the amygdala in the rat. Brain Res., 1029, 135 – 139.en_US
dc.identifier.citedreferenceLaurent, V., Leung, B., Maidment, N. & Balleine, B.W. ( 2012 ) μ‐ and δ‐Opioid‐Related Processes in the Accumbens Core and Shell Differentially Mediate the Influence of Reward‐Guided and Stimulus‐Guided Decisions on Choice. J. Neurosci., 32, 1875 – 1883.en_US
dc.identifier.citedreferenceLevine, A.S. & Billington, C.J. ( 2004 ) Opioids as agents of reward‐related feeding: a consideration of the evidence. Physiol. Behav., 82, 57 – 61.en_US
dc.identifier.citedreferenceLex, A. & Hauber, W. ( 2008 ) Dopamine D1 and D2 receptors in the nucleus accumbens core and shell mediate Pavlovian‐instrumental transfer. Learn. Memory, 15, 483 – 491.en_US
dc.identifier.citedreferenceMahler, S.V. & Berridge, K.C. ( 2009 ) Which cue to “want?” Central amygdala opioid activation enhances and focuses incentive salience on a prepotent reward cue. J. Neurosci., 29, 6500 – 6513.en_US
dc.identifier.citedreferenceMucha, R.F. & Iversen, S.D. ( 1986 ) Increased food intake after opioid microinjections into nucleus accumbens and ventral tegmental area of rat. Brain Res., 397, 214 – 224.en_US
dc.identifier.citedreferenceO'Connor, E.C., Stephens, D.N. & Crombag, H.S. ( 2010 ) Modeling appetitive Pavlovian‐instrumental interactions in mice. Curr. Protoc. Neurosci., 8, 8.25.en_US
dc.identifier.citedreferenceOstlund, S.B. & Maidment, N.T. ( 2012 ) Dopamine Receptor Blockade Attenuates the General Incentive Motivational Effects of Noncontingently Delivered Rewards and Reward‐Paired Cues Without Affecting Their Ability to Bias Action Selection. Neuropsychopharmacol., 37, 508 – 519.en_US
dc.identifier.citedreferencePalmiter, R.D. ( 2007 ) Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci., 30, 375 – 381.en_US
dc.identifier.citedreferencePaxinos, G. & Watson, C. ( 1996 ) The rat brain in stereotaxic coordinates. Academic Press, New York.en_US
dc.identifier.citedreferencePeciña, S. & Berridge, K.C. ( 2000 ) Opioid eating site in accumbens shell mediates food intake and hedonic ‘liking’: map based on microinjection Fos plumes. Brain Res., 863, 71 – 86.en_US
dc.identifier.citedreferencePeciña, S. & Berridge, K.C. ( 2005 ) Hedonic hot spot in nucleus accumbens shell: Where do mu‐opioids cause increased hedonic impact of sweetness? J. Neurosci., 25, 11777 – 11786.en_US
dc.identifier.citedreferencePeciña, S., Schulkin, J. & Berridge, K.C. ( 2006 ) Nucleus accumbens corticotropin‐releasing factor increases cue‐triggered motivation for sucrose reward: paradoxical positive incentive effects in stress? BMC Biol., 4, 8.en_US
dc.identifier.citedreferencePielock, S.M., Lex, B. & Hauber, W. ( 2011 ) The role of dopamine in the dorsomedial striatum in general and outcome‐selective Pavlovian‐instrumental transfer. Eur. J. Neurosci., 33, 717 – 725.en_US
dc.identifier.citedreferenceRagnauth, A., Moroz, M. & Bodnar, R.J. ( 2000 ) Multiple opioid receptors mediate feeding elicited by mu and delta opioid receptor subtype agonists in the nucleus accumbens shell in rats. Brain Res., 876, 76 – 87.en_US
dc.identifier.citedreferenceReynolds, S.M. & Berridge, K.C. ( 2002 ) Positive and negative motivation in nucleus accumbens shell: Bivalent rostrocaudal gradients for GABA‐elicited eating, taste “liking”/”disliking” reactions, place preference/avoidance, and fear. J. Neurosci., 22, 7308 – 7320.en_US
dc.identifier.citedreferenceReynolds, S.M. & Berridge, K.C. ( 2008 ) Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens. Nat. Neurosci., 11, 423 – 425.en_US
dc.identifier.citedreferenceRichard, J.M. & Berridge, K.C. ( 2011 ) Metabotropic glutamate receptor blockade in nucleus accumbens shell shifts affective valence towards fear and disgust. Eur. J. Neurosci., 33, 736 – 747.en_US
dc.identifier.citedreferenceRobinson, T.E. & Berridge, K.C. ( 1993 ) The neural basis of drug craving: an incentive‐sensitization theory of addiction. Brain Res. Rev., 18, 247 – 291.en_US
dc.identifier.citedreferenceRobinson, T.E. & Berridge, K.C. ( 2003 ) Addiction. Annu. Rev. Psychol., 54, 25 – 53.en_US
dc.identifier.citedreferenceRobinson, T.E. & Berridge, K.C. ( 2008 ) Review. The incentive sensitization theory of addiction: some current issues. Philos. T. Roy. Soc. B., 363, 3137 – 3146.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.