Show simple item record

Obesity‐induced diabetes and lower urinary tract fibrosis promote urinary voiding dysfunction in a mouse model

dc.contributor.authorGharaee‐kermani, Mehrnazen_US
dc.contributor.authorRodriguez‐nieves, Jose A.en_US
dc.contributor.authorMehra, Rohiten_US
dc.contributor.authorVezina, Chad A.en_US
dc.contributor.authorSarma, Aruna V.en_US
dc.contributor.authorMacoska, Jill A.en_US
dc.date.accessioned2013-06-18T18:33:20Z
dc.date.available2014-09-02T14:12:52Zen_US
dc.date.issued2013-07en_US
dc.identifier.citationGharaee‐kermani, Mehrnaz ; Rodriguez‐nieves, Jose A. ; Mehra, Rohit; Vezina, Chad A.; Sarma, Aruna V.; Macoska, Jill A. (2013). "Obesityâ induced diabetes and lower urinary tract fibrosis promote urinary voiding dysfunction in a mouse model." The Prostate 73(10): 1123-1133. <http://hdl.handle.net/2027.42/98367>en_US
dc.identifier.issn0270-4137en_US
dc.identifier.issn1097-0045en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98367
dc.description.abstractBACKGROUND Progressive aging‐ and inflammation‐associated fibrosis effectively remodels the extracellular matrix (ECM) to increase prostate tissue stiffness and reduce urethral flexibility, resulting in urinary flow obstruction and lower urinary tract symptoms (LUTS). In the current study, we sought to test whether senescence‐accelerated mouse prone (SAMP)6 mice, which were reported to develop prostatic fibrosis, would also develop LUTS, and whether these symptoms would be exacerbated by diet‐induced obesity and concurrent Type 2 Diabetes Mellitus (T2DM). METHODS To accomplish this, SAMP6 and AKR/J background strain mice were fed regular mouse chow, low fat diet chow, or high fat diet chow for 8 months, then subjected to glucose tolerance tests, assessed for plasma insulin levels, evaluated for urinary voiding function, and assessed for lower urinary tract fibrosis. RESULTS The results of these studies show that SAMP6 mice and AKR/J background strain mice develop diet‐induced obesity and T2DM concurrent with urinary voiding dysfunction. Moreover, urinary voiding dysfunction was more severe in SAMP6 than AKR/J mice and was associated with pronounced prostatic and urethral tissue fibrosis. CONCLUSIONS Taken together, these studies suggest that obesity, T2DM, lower urinary tract fibrosis, and urinary voiding dysfunction are inextricably and biologically linked. Prostate 73: 1123–1133, 2013. © 2013 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherDieten_US
dc.subject.otherFaten_US
dc.subject.otherProstateen_US
dc.subject.otherBladderen_US
dc.subject.otherCollagenen_US
dc.titleObesity‐induced diabetes and lower urinary tract fibrosis promote urinary voiding dysfunction in a mouse modelen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Urology, The University of Michigan, 6217 Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109‐0944.en_US
dc.contributor.affiliationumThe Department of Urology, The University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumThe Graduate Program in Cellular and Molecular Biology, The University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumThe Department of Pathology, The University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherThe Department of Comparative Biosciences, The University of Wisconsin, Madison, Wisconsinen_US
dc.identifier.pmid23532836en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98367/1/22662_ftp.pdf
dc.identifier.doi10.1002/pros.22662en_US
dc.identifier.sourceThe Prostateen_US
dc.identifier.citedreferenceRoehrborn C, Kaplan S, Noble W, Lucia M, Slawin K, McVary K, Kusek J, Nyberg L. The impact of acute or chronic inflammation in baseline biopsy on the risk of clinical progression of BPE: Results from the MTOPS study. AUA Meeting. 2005; Abstract # 1277.en_US
dc.identifier.citedreferenceParsons JK, Sarma AV, McVary K, Wei JT. Obesity and benign prostatic hyperplasia: Clinical connections, emerging etiological paradigms and future directions. J Urol 2013; 189 ( 1 Suppl ): S102 – S106.en_US
dc.identifier.citedreferenceKhoo J, Piantadosi C, Duncan R, Worthley SG, Jenkins A, Noakes M, Worthley MI, Lange K, Wittert GA. Comparing effects of a low‐energy diet and a high‐protein low‐fat diet on sexual and endothelial function, urinary tract symptoms, and inflammation in obese diabetic men. J Sex Med 2011; 8 ( 10 ): 2868 – 2875.en_US
dc.identifier.citedreferenceKlein BE, Klein R, Lee KE, Bruskewitz RC. Correlates of urinary symptom scores in men. Am J Public Health 1999; 89 ( 11 ): 1745 – 1748. PMCID: 1508982.en_US
dc.identifier.citedreferenceJoseph MA, Harlow SD, Wei JT, Sarma AV, Dunn RL, Taylor JM, James SA, Cooney KA, Doerr KM, Montie JE, Schottenfeld D. Risk factors for lower urinary tract symptoms in a population‐based sample of African‐American men. Am J Epidemiol 2003; 157 ( 10 ): 906 – 914.en_US
dc.identifier.citedreferenceMichel MC, Mehlburger L, Schumacher H, Bressel HU, Goepel M. Effect of diabetes on lower urinary tract symptoms in patients with benign prostatic hyperplasia. J Urol 2000; 163 ( 6 ): 1725 – 1729.en_US
dc.identifier.citedreferenceKoskimaki J, Hakama M, Huhtala H, Tammela TL. Association of non‐urological diseases with lower urinary tract symptoms. Scand J Urol Nephrol 2001; 35 ( 5 ): 377 – 381.en_US
dc.identifier.citedreferenceDib PT, Trigo‐Rocha F, Gomes CM, Srougi M. Urodynamic evaluation in diabetic patients with prostate enlargement and lower urinary tract symptoms. Urol Int 2008; 80 ( 4 ): 378 – 382.en_US
dc.identifier.citedreferenceSarma AV, Burke JP, Jacobson DJ, McGree ME, St Sauver J, Girman CJ, Lieber MM, Herman W, Macoska J, Montie JE, Jacobsen SJ. Associations between diabetes and clinical markers of benign prostatic hyperplasia among community‐dwelling Black and White men. Diabetes Care 2008; 31 ( 3 ): 476 – 482.en_US
dc.identifier.citedreferenceMa J, Gharaee‐Kermani M, Kunju L, Hollingsworth JM, Adler J, Arruda EM, Macoska JA. Prostatic fibrosis is associated with lower urinary tract symptoms. J Urol 2012; 188 ( 4 ): 1375 – 1381. PMCID: 3485634.en_US
dc.identifier.citedreferenceTakeda T, Hosokawa M, Higuchi K. Senescence‐accelerated mouse (SAM): A novel murine model of senescence. Exp Gerontol 1997; 32 ( 1–2 ): 105 – 109.en_US
dc.identifier.citedreferenceTakeda T, Matsushita T, Kurozumi M, Takemura K, Higuchi K, Hosokawa M. Pathobiology of the senescence‐accelerated mouse (SAM). Exp Gerontol 1997; 32 ( 1–2 ): 117 – 127.en_US
dc.identifier.citedreferenceSugimura Y, Sakurai M, Hayashi N, Yamashita A, Kawamura J. Age‐related changes of the prostate gland in the senescence‐accelerated mouse. Prostate 1994; 24 ( 1 ): 24 – 32.en_US
dc.identifier.citedreferenceNiimi K, Takahashi E, Itakura C. Adiposity‐related biochemical phenotype in senescence‐accelerated mouse prone 6 (SAMP6). Comp Med 2009; 59 ( 5 ): 431 – 436. PMCID: 2771603.en_US
dc.identifier.citedreferenceHodges SJ, Zhou G, Deng FM, Aboushwareb T, Turner C, Andersson KE, Santago P, Case D, Sun TT, Christ GJ. Voiding pattern analysis as a surrogate for cystometric evaluation in uroplakin II knockout mice. J Urol 2008; 179 ( 5 ): 2046 – 2051.en_US
dc.identifier.citedreferenceAdler J, Swanson SD, Schmiedlin‐Ren P, Higgins PD, Golembeski CP, Polydorides AD, McKenna BJ, Hussain HK, Verrot TM, Zimmermann EM. Magnetization transfer helps detect intestinal fibrosis in an animal model of Crohn disease. Radiology 2011; 259 ( 1 ): 127 – 135. PMCID: 3064818.en_US
dc.identifier.citedreferenceAdler, Imatinib decreases bowel wall fibrosis, reduces inflammatory cytokines and pro‐fibrotic factors in peptidoglican‐polysaccharide rat model of Crohn's disease. 2010.en_US
dc.identifier.citedreferenceNickel JC, Downey J, Young I, Boag S. Asymptomatic inflammation and/or infection in benign prostatic hyperplasia. BJU Int 1999; 84 ( 9 ): 976 – 981.en_US
dc.identifier.citedreferenceParsons JK. Benign prostatic hyperplasia and male lower urinary tract symptoms: Epidemiology and risk factors. Curr Bladder Dysfunct Rep 2010; 5 ( 4 ): 212 – 218.en_US
dc.identifier.citedreferenceRobert G, Descazeaud A, Nicolaïew N, Terry S, Sirab N, Vacherot F, Maillé P, Allory Y, de la Taille A. Inflammation in benign prostatic hyperplasia: A 282 patients' immunohistochemical analysis. Prostate 2009; 69 ( 16 ): 1774 – 1780.en_US
dc.identifier.citedreferenceDelongchamps NB, de la Roza G, Chandan V, Jones R, Sunheimer R, Threatte G, Jumbelic M, Haas GP. Evaluation of prostatitis in autopsied prostates–is chronic inflammation more associated with benign prostatic hyperplasia or cancer ? J Urol 2008; 179 ( 5 ): 1736 – 1740. PMCID: 2661538.en_US
dc.identifier.citedreferenceTheyer G, Kramer G, Assmann I, Sherwood E, Preinfalk W, Marberger M, Zechner O, Steiner GE. Phenotypic characterization of infiltrating leukocytes in benign prostatic hyperplasia. Lab Invest 1992; 66 ( 1 ): 96 – 107.en_US
dc.identifier.citedreferenceSteiner GE, Stix U, Handisurya A, Willheim M, Haitel A, Reithmayr F, Paikl D, Ecker RC, Hrachowitz K, Kramer G, Lee C, Marberger M. Cytokine expression pattern in benign prostatic hyperplasia infiltrating T cells and impact of lymphocytic infiltration on cytokine mRNA profile in prostatic tissue. Lab Invest 2003; 83 ( 8 ): 1131 – 1146.en_US
dc.identifier.citedreferenceKramer G, Mitteregger D, Marberger M. Is benign prostatic hyperplasia (BPH) an immune inflammatory disease ? Eur Urol 2007; 51 ( 5 ): 1202 – 1216.en_US
dc.identifier.citedreferenceBegley L, Monteleon C, Shah RB, Macdonald JW, Macoska JA. CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell 2005; 4 ( 6 ): 291 – 298.en_US
dc.identifier.citedreferenceMeigs JB, Mohr B, Barry MJ, Collins MM, McKinlay JB. Risk factors for clinical benign prostatic hyperplasia in a community‐based population of healthy aging men. J Clin Epidemiol 2001; 54 ( 9 ): 935 – 944.en_US
dc.identifier.citedreferenceVerhamme KM, Dieleman JP, Bleumink GS, van der Lei J, Sturkenboom MC, Artibani W, Begaud B, Berges R, Borkowski A, Chappel CR, Costello A, Dobronski P, Farmer RD, Jimenez Cruz F, Jonas U, MacRae K, Pientka L, Rutten FF, van Schayck CP, Speakman MJ, Tiellac P, Tubaro A, Vallencien G, Vela Navarrete R. Incidence and prevalence of lower urinary tract symptoms suggestive of benign prostatic hyperplasia in primary care—The Triumph project. Eur Urol 2002; 42 ( 4 ): 323 – 328.en_US
dc.identifier.citedreferenceGuess HA. Benign prostatic hyperplasia: Antecedents and natural history. Epidemiol Rev 1992; 14: 131 – 153.en_US
dc.identifier.citedreferenceMcVary KT. A review of combination therapy in patients with benign prostatic hyperplasia. Clin Ther 2007; 29 ( 3 ): 387 – 398.en_US
dc.identifier.citedreferenceGarber AJ. Obesity and type 2 diabetes: Which patients are at risk ? Diabetes Obes Metab 2012; 14 ( 5 ): 399 – 408.en_US
dc.identifier.citedreferenceCenters for Disease Control and Prevention National Diabetes Fact Sheet: National estimates and general information on diabetes and prediabetes in the United States 2011. Atlanta, GA: US Department of Health and Human; Services, Centers for Disease Control and Prevention; 2011.en_US
dc.identifier.citedreferenceBegley LA, Kasina S, MacDonald J, Macoska JA. The inflammatory microenvironment of the aging prostate facilitates cellular proliferation and hypertrophy. Cytokine 2008; 43 ( 2 ): 194 – 199. PMCID: 2538565.en_US
dc.identifier.citedreferenceMacoska JA. Chemokines and BPH/LUTS. Differentiation 2011; 82 ( 4–5 ): 253 – 260.en_US
dc.identifier.citedreferenceBegley LA, Kasina S, Mehra R, Adsule S, Admon AJ, Lonigro RJ, Chinnaiyan AM, Macoska JA. CXCL5 promotes prostate cancer progression. Neoplasia 2008; 10 ( 3 ): 244 – 254. PMCID: 2262133.en_US
dc.identifier.citedreferenceBegley LA, MacDonald JW, Day ML, Macoska JA. CXCL12 activates a robust transcriptional response in human prostate epithelial cells. J Biol Chem 2007; 282 ( 37 ): 26767 – 26774.en_US
dc.identifier.citedreferenceTuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res 2002; 8 ( 9 ): 2912 – 2923.en_US
dc.identifier.citedreferenceSchauer IG, Ressler SJ, Tuxhorn JA, Dang TD, Rowley DR. Elevated epithelial expression of interleukin‐8 correlates with myofibroblast reactive stroma in benign prostatic hyperplasia. Urology 2008; 72 ( 1 ): 205 – 213.en_US
dc.identifier.citedreferenceSchauer IG, Ressler SJ, Rowley DR. Keratinocyte‐derived chemokine induces prostate epithelial hyperplasia and reactive stroma in a novel transgenic mouse model. Prostate 2009; 69 ( 4 ): 373 – 384.en_US
dc.identifier.citedreferenceLumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest 2011; 121 ( 6 ): 2111 – 2117.en_US
dc.identifier.citedreferenceHarwood HJ Jr. The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 2012; 63 ( 1 ): 57 – 75.en_US
dc.identifier.citedreferenceTaube A, Schlich R, Sell H, Eckardt K, Eckel J. Inflammation and metabolic dysfunction: Links to cardiovascular diseases. Am J Physiol Heart Circ Physiol 2012; 302 ( 11 ): H2148 – H2165.en_US
dc.identifier.citedreferencePahl HL. Activators and target genes of Rel/NF‐kappaB transcription factors. Oncogene 1999; 18 ( 49 ): 6853 – 6866.en_US
dc.identifier.citedreferenceShoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006; 116 ( 7 ): 1793 – 1801. PMCID: 1483173.en_US
dc.identifier.citedreferenceScotton CJ, Chambers RC. Molecular targets in pulmonary fibrosis: The myofibroblast in focus. Chest 2007; 132 ( 4 ): 1311 – 1321.en_US
dc.identifier.citedreferenceWynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008; 214 ( 2 ): 199 – 210.en_US
dc.identifier.citedreferenceSpencer M, Yao‐Borengasser A, Unal R, Rasouli N, Gurley CM, Zhu B, Peterson CA, Kern PA. Adipose tissue macrophages in insulin‐resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am J Physiol Endocrinol Metab 2010; 299 ( 6 ): E1016 – E1027.en_US
dc.identifier.citedreferenceGharaee‐Kermani M, Kasina S, Moore BB, Thomas D, Mehra R, Macoska JA. CXC‐type chemokines promote myofibroblast phenoconversion and prostatic fibrosis. PLoS ONE 2012; 7 ( 11 ): e49278.en_US
dc.identifier.citedreferenceLecka‐Czernik B, Moerman EJ, Shmookler Reis RJ, Lipschitz DA. Cellular and molecular biomarkers indicate precocious in vitro senescence in fibroblasts from SAMP6 mice. Evidence supporting a murine model of premature senescence and osteopenia. J Gerontol A Biol Sci Med Sci 1997; 52 ( 6 ): B331 – B336.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.