Show simple item record

Innate immune recognition of flagellin limits systemic persistence of B rucella

dc.contributor.authorTerwagne, Matthieuen_US
dc.contributor.authorFerooz, Jonathanen_US
dc.contributor.authorRolán, Hortensia G.en_US
dc.contributor.authorSun, Yao‐huien_US
dc.contributor.authorAtluri, Vidyaen_US
dc.contributor.authorXavier, Mariana N.en_US
dc.contributor.authorFranchi, Luigien_US
dc.contributor.authorNúñez, Gabrielen_US
dc.contributor.authorLegrand, Thomasen_US
dc.contributor.authorFlavell, Richard A.en_US
dc.contributor.authorDe Bolle, Xavieren_US
dc.contributor.authorLetesson, Jean‐jacquesen_US
dc.contributor.authorTsolis, Renée M.en_US
dc.date.accessioned2013-06-18T18:33:24Z
dc.date.available2014-08-01T19:11:35Zen_US
dc.date.issued2013-06en_US
dc.identifier.citationTerwagne, Matthieu; Ferooz, Jonathan; Rolán, Hortensia G. ; Sun, Yao‐hui ; Atluri, Vidya; Xavier, Mariana N.; Franchi, Luigi; Núñez, Gabriel ; Legrand, Thomas; Flavell, Richard A.; De Bolle, Xavier; Letesson, Jean‐jacques ; Tsolis, Renée M. (2013). "Innate immune recognition of flagellin limits systemic persistence of B rucella ." Cellular Microbiology (6): 942-960. <http://hdl.handle.net/2027.42/98380>en_US
dc.identifier.issn1462-5814en_US
dc.identifier.issn1462-5822en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98380
dc.publisherJohn Wiley & Sonsen_US
dc.titleInnate immune recognition of flagellin limits systemic persistence of B rucellaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23227931en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98380/1/cmi12088.pdf
dc.identifier.doi10.1111/cmi.12088en_US
dc.identifier.sourceCellular Microbiologyen_US
dc.identifier.citedreferenceHunt, A.C., and Bothwell, P.W. ( 1967 ) Histological findings in human brucellosis. J Clin Pathol 20: 267 – 272.en_US
dc.identifier.citedreferenceKeestra, A.M., de Zoete, M.R., Bouwman, L.I., and van Putten, J.P. ( 2010 ) Chicken TLR21 is an innate CpG DNA receptor distinct from mammalian TLR9. J Immunol 185: 460 – 467.en_US
dc.identifier.citedreferenceKofoed, E.M., and Vance, R.E. ( 2011 ) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477: 592 – 595.en_US
dc.identifier.citedreferenceKovach, M.E., Phillips, R.W., Elzer, P.H., Roop, R.M., 2nd, and Peterson, K.M. ( 1994 ) pBBR1MCS: a broad‐host‐range cloning vector. Biotechniques 16: 800 – 802.en_US
dc.identifier.citedreferenceKuida, K., Lippke, J.A., Ku, G., Harding, M.W., Livingston, D.J., Su, M.S., and Flavell, R.A. ( 1995 ) Altered cytokine export and apoptosis in mice deficient in interleukin‐1 beta converting enzyme. Science 267: 2000 – 2003.en_US
dc.identifier.citedreferenceSalcedo, S.P., Marchesini, M.I., Lelouard, H., Fugier, E., Jolly, G., Balor, S., et al. ( 2008 ) Brucella control of dendritic cell maturation is dependent on the TIR‐containing protein Btp1. PLoS Pathog 4: e21.en_US
dc.identifier.citedreferenceSathiyaseelan, J., Goenka, R., Parent, M., Benson, R.M., Murphy, E.A., Fernandes, D.M., et al. ( 2006 ) Treatment of Brucella ‐susceptible mice with IL‐12 increases primary and secondary immunity. Cell Immunol 243: 1 – 9.en_US
dc.identifier.citedreferenceSchroder, K., and Tschopp, J. ( 2010 ) The inflammasomes. Cell 140: 821 – 832.en_US
dc.identifier.citedreferenceSengupta, D., Koblansky, A., Gaines, J., Brown, T., West, A.P., Zhang, D., et al. ( 2009 ) Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter, MAL. J Immunol 184: 956 – 964.en_US
dc.identifier.citedreferenceShames, S.R., and Finlay, B.B. ( 2010 ) Breaking the stereotype: virulence factor‐mediated protection of host cells in bacterial pathogenesis. PLoS Pathog 6: e1001057.en_US
dc.identifier.citedreferenceSimon, R., Priefer, U., and Puhler, A. ( 1983 ) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram‐negative bacteria. Biotechnology 1: 784 – 791.en_US
dc.identifier.citedreferenceSpink, W.W., Hoffbauer, F.W., et al. ( 1949 ) Histopathology of the liver in human brucellosis. J Lab Clin Med 34: 40 – 58.en_US
dc.identifier.citedreferenceStojiljkovic, I., Baumler, A.J., and Heffron, F. ( 1995 ) Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J Bacteriol 177: 1357 – 1366.en_US
dc.identifier.citedreferenceSun, Y.H., Rolan, H.G., and Tsolis, R.M. ( 2007 ) Injection of flagellin into the host cell cytosol by Salmonella enterica serotype Typhimurium. J Biol Chem 282: 33897 – 33901.en_US
dc.identifier.citedreferenceSutterwala, F.S., Mijares, L.A., Li, L., Ogura, Y., Kazmierczak, B.I., and Flavell, R.A. ( 2007 ) Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204: 3235 – 3245.en_US
dc.identifier.citedreferencevan de Veerdonk, F.L., Netea, M.G., Dinarello, C.A., and Joosten, L.A. ( 2011 ) Inflammasome activation and IL‐1beta and IL‐18 processing during infection. Trends Immunol 32: 110 – 116.en_US
dc.identifier.citedreferenceVijay‐Kumar, M., Wu, H., Jones, R., Grant, G., Babbin, B., King, T.P., et al. ( 2006 ) Flagellin suppresses epithelial apoptosis and limits disease during enteric infection. Am J Pathol 169: 1686 – 1700.en_US
dc.identifier.citedreferenceVitry, M.A., De Trez, C., Goriely, S., Dumoutier, L., Akira, S., Ryffel, B., et al. ( 2012 ) Crucial role of IFN‐gamma‐producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2 and Th17 responses in the control of Brucella melitensis infection in mice. Infect Immun 80: 4271 – 4280.en_US
dc.identifier.citedreferenceWang, R.F., and Kushner, S.R. ( 1991 ) Construction of versatile low‐copy‐number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100: 195 – 199.en_US
dc.identifier.citedreferenceWoodcock, D.M., Crowther, P.J., Doherty, J., Jefferson, S., DeCruz, E., Noyer‐Weidner, M., et al. ( 1989 ) Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17: 3469 – 3478.en_US
dc.identifier.citedreferenceYonekura, K., Maki‐Yonekura, S., and Namba, K. ( 2003 ) Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424: 643 – 650.en_US
dc.identifier.citedreferenceYoung, E.J. ( 1995 ) An overview of human brucellosis. Clin Infect Dis 21: 283 – 289; quiz 290.en_US
dc.identifier.citedreferenceYu, Y., Zeng, H., Lyons, S., Carlson, A., Merlin, D., Neish, A.S., and Gewirtz, A.T. ( 2003 ) TLR5‐mediated activation of p38 MAPK regulates epithelial IL‐8 expression via posttranscriptional mechanism. Am J Physiol Gastrointest Liver Physiol 285: G282 – G290.en_US
dc.identifier.citedreferenceZamboni, D.S., Kobayashi, K.S., Kohlsdorf, T., Ogura, Y., Long, E.M., Vance, R.E., et al. ( 2006 ) The Birc1e cytosolic pattern‐recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7: 318 – 325.en_US
dc.identifier.citedreferenceZhao, Y., Yang, J., Shi, J., Gong, Y.N., Lu, Q., Xu, H., et al. ( 2011 ) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477: 596 – 600.en_US
dc.identifier.citedreferenceZygmunt, M.S., Hagius, S.D., Walker, J.V., and Elzer, P.H. ( 2006 ) Identification of Brucella melitensis 16M genes required for bacterial survival in the caprine host. Microbes Infect 8: 2849 – 2854.en_US
dc.identifier.citedreferenceAkhter, A., Gavrilin, M.A., Frantz, L., Washington, S., Ditty, C., Limoli, D., et al. ( 2009 ) Caspase‐7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection. PLoS Pathog 5: e1000361.en_US
dc.identifier.citedreferenceAmer, A., Franchi, L., Kanneganti, T.D., Body‐Malapel, M., Ozoren, N., Brady, G., et al. ( 2006 ) Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281: 35217 – 35223.en_US
dc.identifier.citedreferenceAndersen‐Nissen, E., Smith, K.D., Strobe, K.L., Barrett, S.L., Cookson, B.T., Logan, S.M., and Aderem, A. ( 2005 ) Evasion of Toll‐like receptor 5 by flagellated bacteria. Proc Natl Acad Sci USA 102: 9247 – 9252.en_US
dc.identifier.citedreferenceAnderson, T.D., and Cheville, N.F. ( 1986 ) Ultrastructural morphometric analysis of Brucella abortus ‐infected trophoblasts in experimental placentitis. Bacterial replication occurs in rough endoplasmic reticulum. Am J Pathol 124: 226 – 237.en_US
dc.identifier.citedreferenceArellano‐Reynoso, B., Lapaque, N., Salcedo, S., Briones, G., Ciocchini, A.E., Ugalde, R., et al. ( 2005 ) Cyclic beta‐1,2‐glucan is a Brucella virulence factor required for intracellular survival. Nat Immunol 6: 618 – 625.en_US
dc.identifier.citedreferenceAtluri, V.L., Xavier, M.N., de Jong, M.F., den Hartigh, A.B., and Tsolis, R.E. ( 2011 ) Interactions of the human pathogenic Brucella species with their hosts. Annu Rev Microbiol 65: 523 – 541.en_US
dc.identifier.citedreferenceAusubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. ( 1991 ) Current Protocols in Molecular Biology. New York: John Wiley & Sons.en_US
dc.identifier.citedreferenceBarquero‐Calvo, E., Chaves‐Olarte, E., Weiss, D.S., Guzman‐Verri, C., Chacon‐Diaz, C., Rucavado, A., et al. ( 2007 ) Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS ONE 2: e631.en_US
dc.identifier.citedreferenceBeck, E., Ludwig, G., Auerswald, E.A., Reiss, B., and Schaller, H. ( 1982 ) Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19: 327 – 336.en_US
dc.identifier.citedreferenceBergsbaken, T., Fink, S.L., and Cookson, B.T. ( 2009 ) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7: 99 – 109.en_US
dc.identifier.citedreferenceBriones, G., Inon de Iannino, N., Roset, M., Vigliocco, A., Paulo, P.S., and Ugalde, R.A. ( 2001 ) Brucella abortus cyclic beta‐1,2‐glucan mutants have reduced virulence in mice and are defective in intracellular replication in HeLa cells. Infect Immun 69: 4528 – 4535.en_US
dc.identifier.citedreferenceBrodsky, I.E., and Medzhitov, R. ( 2009 ) Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol 11: 521 – 526.en_US
dc.identifier.citedreferenceBrodsky, I.E., and Monack, D. ( 2009 ) NLR‐mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin Immunol 21: 199 – 207.en_US
dc.identifier.citedreferenceBroz, P., Newton, K., Lamkanfi, M., Mariathasan, S., Dixit, V.M., and Monack, D.M. ( 2010 ) Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med 207: 1745 – 1755.en_US
dc.identifier.citedreferenceCase, C.L., Shin, S., and Roy, C.R. ( 2009 ) Asc and Ipaf Inflammasomes direct distinct pathways for caspase‐1 activation in response to Legionella pneumophila. Infect Immun 77: 1981 – 1991.en_US
dc.identifier.citedreferenceLamkanfi, M., and Dixit, V.M. ( 2009 ) Inflammasomes: guardians of cytosolic sanctity. Immunol Rev 227: 95 – 105.en_US
dc.identifier.citedreferenceLapaque, N., Forquet, F., de Chastellier, C., Mishal, Z., Jolly, G., Moreno, E., et al. ( 2006 ) Characterization of Brucella abortus lipopolysaccharide macrodomains as mega rafts. Cell Microbiol 8: 197 – 206.en_US
dc.identifier.citedreferenceLapaque, N., Muller, A., Alexopoulou, L., Howard, J.C., and Gorvel, J.P. ( 2009 ) Brucella abortus induces Irgm3 and Irga6 expression via type‐I IFN by a MyD88‐dependent pathway, without the requirement of TLR2, TLR4, TLR5 and TLR9. Microb Pathog 47: 299 – 304.en_US
dc.identifier.citedreferenceLi, X., Lin, H., Zhang, W., Zou, Y., Zhang, J., Tang, X., and Zhou, J.M. ( 2005 ) Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. Proc Natl Acad Sci USA 102: 12990 – 12995.en_US
dc.identifier.citedreferenceLightfield, K.L., Persson, J., Brubaker, S.W., Witte, C.E., von Moltke, J., Dunipace, E.A., et al. ( 2008 ) Critical function for Naip5 in inflammasome activation by a conserved carboxy‐terminal domain of flagellin. Nat Immunol 9: 1171 – 1178.en_US
dc.identifier.citedreferenceLilleengen, K. ( 1948 ) Typing of Salmonella typhimurium by means of bacteriophage. Acta Pathol Microbiol Scand Suppl 77: 2 – 125.en_US
dc.identifier.citedreferenceMcElvania Tekippe, E., Allen, I.C., Hulseberg, P.D., Sullivan, J.T., McCann, J.R., Sandor, M., et al. ( 2010 ) Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase‐1. PLoS ONE 5: e12320.en_US
dc.identifier.citedreferenceMariathasan, S., Newton, K., Monack, D.M., Vucic, D., French, D.M., Lee, W.P., et al. ( 2004 ) Differential activation of the inflammasome by caspase‐1 adaptors ASC and Ipaf. Nature 430: 213 – 218.en_US
dc.identifier.citedreferenceMiao, E.A., Alpuche‐Aranda, C.M., Dors, M., Clark, A.E., Bader, M.W., Miller, S.I., and Aderem, A. ( 2006 ) Cytoplasmic flagellin activates caspase‐1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7: 569 – 575.en_US
dc.identifier.citedreferenceMiao, E.A., Andersen‐Nissen, E., Warren, S.E., and Aderem, A. ( 2007 ) TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin Immunopathol 29: 275 – 288.en_US
dc.identifier.citedreferenceMiao, E.A., Leaf, I.A., Treuting, P.M., Mao, D.P., Dors, M., Sarkar, A., et al. ( 2010a ) Caspase‐1‐induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11: 1136 – 1142.en_US
dc.identifier.citedreferenceMiao, E.A., Mao, D.P., Yudkovsky, N., Bonneau, R., Lorang, C.G., Warren, S.E., et al. ( 2010b ) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 107: 3076 – 3080.en_US
dc.identifier.citedreferenceMolofsky, A.B., Byrne, B.G., Whitfield, N.N., Madigan, C.A., Fuse, E.T., Tateda, K., and Swanson, M.S. ( 2006 ) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203: 1093 – 1104.en_US
dc.identifier.citedreferenceMurphy, E.A., Sathiyaseelan, J., Parent, M.A., Zou, B., and Baldwin, C.L. ( 2001 ) Interferon‐gamma is crucial for surviving a Brucella abortus infection in both resistant C57BL/6 and susceptible BALB/c mice. Immunology 103: 511 – 518.en_US
dc.identifier.citedreferenceO'Callaghan, D., Cazevieille, C., Allardet‐Servent, A., Boschiroli, M.L., Bourg, G., Foulongne, V., et al. ( 1999 ) A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol 33: 1210 – 1220.en_US
dc.identifier.citedreferencePappas, G., Papadimitriou, P., Akritidis, N., Christou, L., and Tsianos, E.V. ( 2006 ) The new global map of human brucellosis. Lancet Infect Dis 6: 91 – 99.en_US
dc.identifier.citedreferenceRadhakrishnan, G.K., Yu, Q., Harms, J.S., and Splitter, G.A. ( 2009 ) Brucella TIR domain‐containing protein mimics properties of the Toll‐like receptor adaptor protein TIRAP. J Biol Chem 284: 9892 – 9898.en_US
dc.identifier.citedreferenceRaffatellu, M., Chessa, D., Wilson, R.P., Dusold, R., Rubino, S., and Baumler, A.J. ( 2005 ) The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll‐like receptor‐dependent interleukin‐8 expression in the intestinal mucosa. Infect Immun 73: 3367 – 3374.en_US
dc.identifier.citedreferenceRaupach, B., Peuschel, S.K., Monack, D.M., and Zychlinsky, A. ( 2006 ) Caspase‐1‐mediated activation of interleukin‐1beta (IL‐1beta) and IL‐18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect Immun 74: 4922 – 4926.en_US
dc.identifier.citedreferenceRen, T., Zamboni, D.S., Roy, C.R., Dietrich, W.F., and Vance, R.E. ( 2006 ) Flagellin‐deficient Legionella mutants evade caspase‐1‐ and Naip5‐mediated macrophage immunity. PLoS Pathog 2: e18.en_US
dc.identifier.citedreferenceRolan, H.G., and Tsolis, R.M. ( 2007 ) Mice lacking components of adaptive immunity show increased Brucella abortus virB mutant colonization. Infect Immun 75: 2965 – 2973.en_US
dc.identifier.citedreferenceRolan, H.G., Xavier, M.N., Santos, R.L., and Tsolis, R.M. ( 2009 ) Natural antibody contributes to host defense against an attenuated Brucella abortus virB mutant. Infect Immun 77: 3004 – 3013.en_US
dc.identifier.citedreferenceSalazar‐Gonzalez, R.M., and McSorley, S.J. ( 2005 ) Salmonella flagellin, a microbial target of the innate and adaptive immune system. Immunol Lett 101: 117 – 122.en_US
dc.identifier.citedreferenceSalazar‐Gonzalez, R.M., Srinivasan, A., Griffin, A., Muralimohan, G., Ertelt, J.M., Ravindran, R., et al. ( 2007 ) Salmonella flagellin induces bystander activation of splenic dendritic cells and hinders bacterial replication in vivo. J Immunol 179: 6169 – 6175.en_US
dc.identifier.citedreferenceCelli, J., de Chastellier, C., Franchini, D.M., Pizarro‐Cerda, J., Moreno, E., and Gorvel, J.P. ( 2003 ) Brucella evades macrophage killing via VirB‐dependent sustained interactions with the endoplasmic reticulum. J Exp Med 198: 545 – 556.en_US
dc.identifier.citedreferenceCopin, R., De Baetselier, P., Carlier, Y., Letesson, J.J., and Muraille, E. ( 2007 ) MyD88‐dependent activation of B220‐CD11b+LY‐6C+ dendritic cells during Brucella melitensis infection. J Immunol 178: 5182 – 5191.en_US
dc.identifier.citedreferenceCopin, R., Vitry, M.A., Hanot Mambres, D., Machelart, A., De Trez, C., Vanderwinden, J.M., et al. ( 2012 ) In situ microscopy analysis reveals local innate immune response developed around Brucella infected cells in resistant and susceptible mice. PLoS Pathog 8: e1002575.en_US
dc.identifier.citedreferenceCorbel, M.J. ( 1997 ) Brucellosis: an overview. Emerg Infect Dis 3: 213 – 221.en_US
dc.identifier.citedreferenceCummings, L.A., Wilkerson, W.D., Bergsbaken, T., and Cookson, B.T. ( 2006 ) In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol Microbiol 61: 795 – 809.en_US
dc.identifier.citedreferenceDinarello, C.A. ( 2009 ) Immunological and inflammatory functions of the interleukin‐1 family. Annu Rev Immunol 27: 519 – 550.en_US
dc.identifier.citedreferenceEaves‐Pyles, T., Murthy, K., Liaudet, L., Virag, L., Ross, G., Soriano, F.G., et al. ( 2001 ) Flagellin, a novel mediator of Salmonella ‐induced epithelial activation and systemic inflammation: I kappa B alpha degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction. J Immunol 166: 1248 – 1260.en_US
dc.identifier.citedreferenceEnright, F.M., Araya, L.N., Elzer, P.H., Rowe, G.E., and Winter, A.J. ( 1990 ) Comparative histopathology in BALB/c mice infected with virulent and attenuated strains of Brucella abortus. Vet Immunol Immunopathol 26: 171 – 182.en_US
dc.identifier.citedreferenceEskra, L., Canavessi, A., Carey, M., and Splitter, G. ( 2001 ) Brucella abortus genes identified following constitutive growth and macrophage infection. Infect Immun 69: 7736 – 7742.en_US
dc.identifier.citedreferenceFernandes, D.M., Jiang, X., Jung, J.H., and Baldwin, C.L. ( 1996 ) Comparison of T cell cytokines in resistant and susceptible mice infected with virulent Brucella abortus strain 2308. FEMS Immunol Med Microbiol 16: 193 – 203.en_US
dc.identifier.citedreferenceFerooz, J., Lemaire, J., and Letesson, J.J. ( 2011 ) Role of FlbT in flagellin production in Brucella melitensis. Microbiology 157: 1253 – 1262.en_US
dc.identifier.citedreferenceFeuillet, V., Medjane, S., Mondor, I., Demaria, O., Pagni, P.P., Galan, J.E., et al. ( 2006 ) Involvement of Toll‐like receptor 5 in the recognition of flagellated bacteria. Proc Natl Acad Sci USA 103: 12487 – 12492.en_US
dc.identifier.citedreferenceFranchi, L., Amer, A., Body‐Malapel, M., Kanneganti, T.D., Ozoren, N., Jagirdar, R., et al. ( 2006 ) Cytosolic flagellin requires Ipaf for activation of caspase‐1 and interleukin 1beta in salmonella‐infected macrophages. Nat Immunol 7: 576 – 582.en_US
dc.identifier.citedreferenceFranchi, L., Kamada, N., Nakamura, Y., Burberry, A., Kuffa, P., Suzuki, S., et al. ( 2012 ) NLRC4‐driven production of IL‐1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat Immunol 13: 449 – 456.en_US
dc.identifier.citedreferenceFretin, D., Fauconnier, A., Kohler, S., Halling, S., Leonard, S., Nijskens, C., et al. ( 2005 ) The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell Microbiol 7: 687 – 698.en_US
dc.identifier.citedreferenceGewirtz, A.T., Navas, T.A., Lyons, S., Godowski, P.J., and Madara, J.L. ( 2001 ) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167: 1882 – 1885.en_US
dc.identifier.citedreferenceGross, A., Terraza, A., Ouahrani‐Bettache, S., Liautard, J.P., and Dornand, J. ( 2000 ) In vitro Brucella suis infection prevents the programmed cell death of human monocytic cells. Infect Immun 68: 342 – 351.en_US
dc.identifier.citedreferenceGrundling, A., Burrack, L.S., Bouwer, H.G., and Higgins, D.E. ( 2004 ) Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc Natl Acad Sci USA 101: 12318 – 12323.en_US
dc.identifier.citedreferenceHawn, T.R., Verbon, A., Lettinga, K.D., Zhao, L.P., Li, S.S., Laws, R.J., et al. ( 2003 ) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires' disease. J Exp Med 198: 1563 – 1572.en_US
dc.identifier.citedreferenceHayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., et al. ( 2001 ) The innate immune response to bacterial flagellin is mediated by Toll‐like receptor 5. Nature 410: 1099 – 1103.en_US
dc.identifier.citedreferenceKawai, T., and Akira, S. ( 2011 ) Toll‐like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34: 637 – 650.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.