Show simple item record

High‐order CFD methods: current status and perspective

dc.contributor.authorWang, Z.J.en_US
dc.contributor.authorFidkowski, Krzysztofen_US
dc.contributor.authorAbgrall, Rémien_US
dc.contributor.authorBassi, Francescoen_US
dc.contributor.authorCaraeni, Doruen_US
dc.contributor.authorCary, Andrewen_US
dc.contributor.authorDeconinck, Hermanen_US
dc.contributor.authorHartmann, Ralfen_US
dc.contributor.authorHillewaert, Koenen_US
dc.contributor.authorHuynh, H.T.en_US
dc.contributor.authorKroll, Norberten_US
dc.contributor.authorMay, Georgen_US
dc.contributor.authorPersson, Per‐olofen_US
dc.contributor.authorLeer, Bramen_US
dc.contributor.authorVisbal, Miguelen_US
dc.date.accessioned2013-06-18T18:33:31Z
dc.date.available2014-09-02T14:12:52Zen_US
dc.date.issued2013-07-20en_US
dc.identifier.citationWang, Z.J.; Fidkowski, Krzysztof; Abgrall, Rémi ; Bassi, Francesco; Caraeni, Doru; Cary, Andrew; Deconinck, Herman; Hartmann, Ralf; Hillewaert, Koen; Huynh, H.T.; Kroll, Norbert; May, Georg; Persson, Per‐olof ; Leer, Bram; Visbal, Miguel (2013). "Highâ order CFD methods: current status and perspective." International Journal for Numerical Methods in Fluids 72(8): 811-845. <http://hdl.handle.net/2027.42/98401>en_US
dc.identifier.issn0271-2091en_US
dc.identifier.issn1097-0363en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98401
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherSIAMen_US
dc.subject.otherHigh‐Order Methodsen_US
dc.subject.otherCFDen_US
dc.titleHigh‐order CFD methods: current status and perspectiveen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98401/1/fld3767.pdf
dc.identifier.doi10.1002/fld.3767en_US
dc.identifier.sourceInternational Journal for Numerical Methods in Fluidsen_US
dc.identifier.citedreferenceCook P, McDonald M, Firmin M. Aerofoil RAE 2822 – pressure distributions, and boundary layer and wake measurements, experimental data base for computer program assessment. AGARD Report AR‐138, Advanced Guidance for Alliance Research and Development, part of NATO Science & Technology Organization, 1979.en_US
dc.identifier.citedreferenceBarth T, Frederickson P. High‐order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA Paper 90‐0013, American Institute of Aeronautics and Astronautics, 1990.en_US
dc.identifier.citedreferenceCockburn B, Shu CW. TVB Runge‐Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Mathematics of Computation 1989; 52: 411 – 435.en_US
dc.identifier.citedreferenceBassi F, Rebay S. A high–order discontinuous finite element method for the numerical solution of the compressible Navier‐Stokes equations. Journal of Computational Physics 1997; 131: 267 – 279.en_US
dc.identifier.citedreferenceHughes T. Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier‐Stokes equations. International Journal of Numerical Methods in Fluids 1987; 7: 1261 – 1275.en_US
dc.identifier.citedreferenceHuynh H. A flux reconstruction approach to high‐order schemes including discontinuous Galerkin methods. AIAA Paper 2007‐4079, American Institute of Aeronautics and Astronautics, 2007.en_US
dc.identifier.citedreferenceKopriva D, Kolias J. A conservative staggered‐grid Chebyshev multidomain method for compressible flows. Journal of Computational Physics 1996; 125: 244 – 261.en_US
dc.identifier.citedreferenceLiu Y, Vinokur M, Wang Z. Discontinuous spectral difference method for conservation laws on unstructured grids. Journal of Computational Physics 2006; 216: 780 – 801.en_US
dc.identifier.citedreferencePatera A. A spectral element method for fluid dynamics: laminar flow in a channel expansion. Journal of Computational Physics 1984; 54: 468 – 488.en_US
dc.identifier.citedreferenceReed W, Hill T. Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory Technical Report LA‐UR‐73‐479, Los Alamos Scientific Laboratory, 1973.en_US
dc.identifier.citedreferenceEkaterinaris J. High‐order accurate, low numerical diffusion methods for aerodynamics. Progress in Aerospace Sciences 2005; 41: 192 – 300.en_US
dc.identifier.citedreferenceWang Z. High–order methods for the Euler and Navier‐Stokes equations on unstructured grids. Progress in Aerospace Sciences 2007; 43: 1 – 41.en_US
dc.identifier.citedreferenceVassberg J. Expectations for computational fluid dynamics. Journal of Computational Fluid Dynamics 2005; 19 ( 8 ): 549 – 558.en_US
dc.identifier.citedreferenceWagner C, Hüttl T, Sagaut P. Large‐eddy Simulation for Acoustics. Cambridge University Press: Cambridge, United Kingdom, 2007.en_US
dc.identifier.citedreferenceKroll N, Bieler H, Deconinck H, Couaillier V, van der Ven H, Sorensen K. ADIGMA – A European Initiative on the Development of Adaptive Higher‐order Variational Methods for Aerospace Applications, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 113. Springer: Berlin, Heidelberg, 2010.en_US
dc.identifier.citedreferenceDLR Germany. TauBench ‐ IPACS. Available from: http://www.ipacs‐benchmark.org [Accessed on 12/24/2012].en_US
dc.identifier.citedreferenceChiocchia G. Exact solutions to transonic and supersonic flows. AGARD Report AR‐211, Advanced Guidance for Alliance Research and Development, part of NATO Science & Technology Organization, 1985.en_US
dc.identifier.citedreferenceLandau L, Lifshitz E. Fluid mechanics, 2nd ed., Course in Theoretical Physics. Elsevier: Amsterdam, the Netherlands, 1987.en_US
dc.identifier.citedreferenceRiley A, Lowson M. Development of a three dimensional free shear layer. Journal of Fluid Mechanics 1998; 369: 49 – 89.en_US
dc.identifier.citedreferenceKlaij C, van der Vegt J, van der Ven H. Space‐time discontinuous Galerkin method for the compressible Navier‐Stokes equations. Journal of Computational Physics 2006; 217: 589 – 611.en_US
dc.identifier.citedreferenceLeicht T, Hartmann R. Error estimation and anisotropic mesh refinement for 3D laminar aerodynamic flow simulations. Journal of Computational Physics 2010; 29 ( 19 ): 7344 – 7360.en_US
dc.identifier.citedreferenceMorrison JH, Hemsch MJ. Statistical analysis of CFD solutions from the third AIAA drag prediction workshop. AIAA Paper 2007‐254, American Institute of Aeronautics and Astronautics, 2007.en_US
dc.identifier.citedreferenceSelig M, Guglielmo J, Broeren A, Giguère P. Summary of Low‐speed Airfoil Data Vol. 1. SoarTech Publications: Virginia Beach, Virginia, 1995.en_US
dc.identifier.citedreferenceWilliamson J. Low‐storage Runge‐Kutta schemes. Journal of Computational Physics 1980; 35: 48 – 56.en_US
dc.identifier.citedreferencevan Rees WM, Leonard A, Pullin DI, Koumoutsakos P. A comparison of vortex and pseudo‐spectral methods for the simulation of periodic vortical flows at high Reynolds numbers. Journal of Computational Physics 2011; 230 ( 8 ): 2794 – 2805. DOI: 10.1016/j.jcp.2010.11.031.en_US
dc.identifier.citedreferenceKim J, Lee D. Optimized compact finite difference schemes with maximum resolution. AIAA Journal 1996; 34 ( 5 ): 887 – 893.en_US
dc.identifier.citedreferenceRamboer J, Broeckhoven T, Smirnov S, Lacor C. Optimization of time integration schemes coupled to spatial discretization for use in CAA applications. Journal of Computational Physics 2006; 213 ( 2 ): 777 – 802.en_US
dc.identifier.citedreferenceHu F, Hussani M, Manthey J. Low‐dissipation and low‐dispersion Runge‐Kutta schemes for computational acoustics. Journal of Computational Physics 1996; 124: 177 – 191.en_US
dc.identifier.citedreferenceGeuzaine C, Remacle JF. Gmsh: a three‐dimensional finite element mesh generator with built‐in pre‐ and post‐processing facilities. International Journal for Numerical Methods in Engineering 2009; 79 ( 11 ): 1309 – 1331.en_US
dc.identifier.citedreferenceFidkowski KJ, Darmofal DL. Review of output‐based error estimation and mesh adaptation in computational fluid dynamics. American Institute of Aeronautics and Astronautics Journal 2011; 49 ( 4 ): 673 – 694.en_US
dc.identifier.citedreferenceGottlieb S, Orszag A. Numerical Analysis of Spectral Methods: Theory and Applications. SIAM: Philadelphia, 1977.en_US
dc.identifier.citedreferenceGodunov S. A finite‐difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Matematicheski Sbornik 1959; 47: 271 – 306.en_US
dc.identifier.citedreferenceHarten A, Engquist B, Osher S, Chakravarthy S. Uniformly high order essentially non‐oscillatory schemes III. Journal of Computational Physics 1987; 71: 231 – 303.en_US
dc.identifier.citedreferenceLele S. Compact finite difference schemes with spectral‐like resolution. Journal of Computational Physics 1992; 103: 16 – 42.en_US
dc.identifier.citedreferenceLiu X, Osher S, Chan T. Weighted essentially non‐oscillatory schemes. Journal of Computational Physics 1994; 115: 200 – 212.en_US
dc.identifier.citedreferenceTam C, Webb J. Dispersion‐relationpreserving finite difference schemes for computational acoustics. Journal of Computational Physics 1993; 107: 262 – 281.en_US
dc.identifier.citedreferenceLeer BV. Towards the ultimate conservative difference scheme V. A second order sequel to Godunov's method. Journal of Computational Physics 1979; 32: 101 – 136.en_US
dc.identifier.citedreferenceVisbal M, Gaitonde D. On the use of higher‐order finite‐difference schemes on curvilinear and deforming meshes. Journal of Computational Physics 2002; 181 ( 1 ): 155 – 185.en_US
dc.identifier.citedreferenceAbgrall R, Larat A, Ricchiuto M. Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes. Journal of Computational Physics 2011; 230 ( 11 ): 4103 – 4136.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.