Show simple item record

On the Role of the Accretion Disk in Black Hole Disk-Jet Connections

dc.contributor.authorMiller, Jon M.en_US
dc.contributor.authorPooley, G. G.en_US
dc.contributor.authorFabian, A. C.en_US
dc.contributor.authorNowak, M. A.en_US
dc.contributor.authorReis, R. C.en_US
dc.contributor.authorCackett, Edward M.en_US
dc.contributor.authorPottschmidt, K.en_US
dc.contributor.authorWilms, J.en_US
dc.date.accessioned2013-06-28T15:25:41Z
dc.date.available2013-06-28T15:25:41Z
dc.date.issued2012en_US
dc.identifier.citationMiller, Jon M.; Pooley, G. G.; Fabian, A. C.; Nowak, M. A.; Reis, R. C.; Cackett, Edward M.; Pottschmidt, K.; Wilms, J. (2012). "On the Role of the Accretion Disk in Black Hole Disk-Jet Connections." The Astrophysical Journal 757(1): 11. <http://hdl.handle.net/2027.42/98575>en_US
dc.identifier.urihttp://stacks.iop.org/0004-637X/757/i=1/a=11en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98575
dc.description.abstractModels of jet production in black hole systems suggest that the properties of the accretion disk—such as its mass accretion rate, inner radius, and emergent magnetic field—should drive and modulate the production of relativistic jets. Stellar-mass black holes in the "low/hard" state are an excellent laboratory in which to study disk-jet connections, but few coordinated observations are made using spectrometers that can incisively probe the inner disk. We report on a series of 20 Suzaku observations of Cygnus X-1 made in the jet-producing low/hard state. Contemporaneous radio monitoring was done using the Arcminute MicroKelvin Array radio telescope. Two important and simple results are obtained: (1) the jet (as traced by radio flux) does not appear to be modulated by changes in the inner radius of the accretion disk and (2) the jet is sensitive to disk properties, including its flux, temperature, and ionization. Some more complex results may reveal aspects of a coupled disk-corona-jet system. A positive correlation between the reflected X-ray flux and radio flux may represent specific support for a plasma ejection model of the corona, wherein the base of a jet produces hard X-ray emission. Within the framework of the plasma ejection model, the spectra suggest a jet base with v / c ##IMG## [http://ej.iop.org/icons/Entities/sime.gif] {sime 0.3 or the escape velocity for a vertical height of z ##IMG## [http://ej.iop.org/icons/Entities/sime.gif] {sime 20 GM / c 2 above the black hole. The detailed results of X-ray disk continuum and reflection modeling also suggest a height of z ##IMG## [http://ej.iop.org/icons/Entities/sime.gif] {sime 20 GM / c 2 for hard X-ray production above a black hole, with a spin in the range 0.6 ≤ a ≤ 0.99. This height agrees with X-ray time lags recently found in Cygnus X-1. The overall picture that emerges from this study is broadly consistent with some jet-focused models for black hole spectral energy distributions in which a relativistic plasma is accelerated at z = 10-100 GM / c 2 . We discuss these results in the context of disk-jet connections across the black hole mass scale.en_US
dc.publisherIOP Publishingen_US
dc.titleOn the Role of the Accretion Disk in Black Hole Disk-Jet Connectionsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98575/1/0004-637X_757_1_11.pdf
dc.identifier.doi10.1088/0004-637X/757/1/11en_US
dc.identifier.sourceThe Astrophysical Journalen_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.