Show simple item record

A two-dimensional analytical model and experimental validation of garter stitch knitted shape memory alloy actuator architecture

dc.contributor.authorAbel, Juliannaen_US
dc.contributor.authorLuntz, Jonathanen_US
dc.contributor.authorBrei, Diannen_US
dc.date.accessioned2013-06-28T15:25:52Z
dc.date.available2013-06-28T15:25:52Z
dc.date.issued2012en_US
dc.identifier.citationAbel, Julianna; Luntz, Jonathan; Brei, Diann (2012). "A two-dimensional analytical model and experimental validation of garter stitch knitted shape memory alloy actuator architecture." Smart Materials and Structures 21(8): 85011. <http://hdl.handle.net/2027.42/98618>en_US
dc.identifier.urihttp://stacks.iop.org/0964-1726/21/i=8/a=085011en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98618
dc.description.abstractActive knits are a unique architectural approach to meeting emerging smart structure needs for distributed high strain actuation with simultaneous force generation. This paper presents an analytical state-based model for predicting the actuation response of a shape memory alloy (SMA) garter knit textile. Garter knits generate significant contraction against moderate to large loads when heated, due to the continuous interlocked network of loops of SMA wire. For this knit architecture, the states of operation are defined on the basis of the thermal and mechanical loading of the textile, the resulting phase change of the SMA, and the load path followed to that state. Transitions between these operational states induce either stick or slip frictional forces depending upon the state and path, which affect the actuation response. A load–extension model of the textile is derived for each operational state using elastica theory and Euler–Bernoulli beam bending for the large deformations within a loop of wire based on the stress–strain behavior of the SMA material. This provides kinematic and kinetic relations which scale to form analytical transcendental expressions for the net actuation motion against an external load. This model was validated experimentally for an SMA garter knit textile over a range of applied forces with good correlation for both the load–extension behavior in each state as well as the net motion produced during the actuation cycle (250% recoverable strain and over 50% actuation). The two-dimensional analytical model of the garter stitch active knit provides the ability to predict the kinetic actuation performance, providing the basis for the design and synthesis of large stroke, large force distributed actuators that employ this novel architecture.en_US
dc.publisherIOP Publishingen_US
dc.titleA two-dimensional analytical model and experimental validation of garter stitch knitted shape memory alloy actuator architectureen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98618/1/0964-1726_21_8_085011.pdf
dc.identifier.doi10.1088/0964-1726/21/8/085011en_US
dc.identifier.sourceSmart Materials and Structuresen_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.