Show simple item record

Orosphere assay: A method for propagation of head and neck cancer stem cells

dc.contributor.authorKrishnamurthy, Sudhaen_US
dc.contributor.authorNör, Jacques E.en_US
dc.date.accessioned2013-07-08T17:45:30Z
dc.date.available2014-09-02T14:12:52Zen_US
dc.date.issued2013-07en_US
dc.identifier.citationKrishnamurthy, Sudha; Nör, Jacques E. (2013). "Orosphere assay: A method for propagation of head and neck cancer stem cells." Head & Neck 35(7): 1015-1021. <http://hdl.handle.net/2027.42/98785>en_US
dc.identifier.issn1043-3074en_US
dc.identifier.issn1097-0347en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98785
dc.description.abstractBackground Recent evidence suggests that head and neck squamous cell carcinomas (HNSCCs) harbor a small subpopulation of highly tumorigenic cells, designated cancer stem cells. A limiting factor in cancer stem cell research is the intrinsic difficulty of expanding cells in an undifferentiated state in vitro. Methods Here, we describe the development of the orosphere assay, a method for the study of putative head and neck cancer stem cells. An orosphere is defined as a nonadherent colony of cells sorted from primary HNSCCs or from HNSCC cell lines and cultured in 3‐dimensional soft agar or ultralow attachment plates. Aldehyde dehydrogenase activity and CD44 expression were used here as stem cell markers. Results This assay allowed for the propagation of head and neck cancer cells that retained stemness and self‐renewal. Conclusion The orosphere assay is well suited for studies designed to understand the pathobiology of head and neck cancer stem cells. © 2012 Wiley Periodicals, Inc. Head Neck, 2013en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherSuspension Cultureen_US
dc.subject.otherStemnessen_US
dc.subject.otherSelf‐Renewalen_US
dc.subject.otherSphereen_US
dc.subject.otherSquamous Cell Carcinomaen_US
dc.titleOrosphere assay: A method for propagation of head and neck cancer stem cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelOtolaryngologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumProfessor of Dentistry, Otolaryngology, and Biomedical Engineering, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, Michiganen_US
dc.identifier.pmid22791367en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98785/1/23076_ftp.pdf
dc.identifier.doi10.1002/hed.23076en_US
dc.identifier.sourceHead & Necken_US
dc.identifier.citedreferenceReynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255: 1707 – 1710.en_US
dc.identifier.citedreferenceKrishnamurthy S, Dong Z, Vodopyanov D, et al. Endothelial cell‐initiated signaling promotes the survival and self‐renewal of cancer stem cells. Cancer Res 2010; 70: 9969 – 9978.en_US
dc.identifier.citedreferenceDontu G, Wicha MS. Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia 2005; 10: 75 – 86.en_US
dc.identifier.citedreferenceDontu G, Abdullah WM, Foley JM, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17: 1253 – 1270.en_US
dc.identifier.citedreferenceHemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 2003; 100: 15178 – 15183.en_US
dc.identifier.citedreferencePastrana E, Silva‐Vargas V, Doetsch F. Eyes wide open: a critical review of sphere‐formation as an assay for stem cells. Cell Stem Cell 2011; 8: 486 – 498.en_US
dc.identifier.citedreferenceMiskon A, Mahara A, Uyama H, et al. A suspension induction for myocardial differentiation of rat mesenchymal stem cells on various extracellular matrix proteins. Tissue Eng Part C Methods 2010; 16: 979 – 987.en_US
dc.identifier.citedreferenceDenning C, Allegrucci C, Priddle H, et al. Common culture conditions for maintenance and cardiomyocyte diiferentiation of the human embryonic stem cell lines, BG01 and HUES‐7. Int J Dev Biol 2006; 50: 27 – 37.en_US
dc.identifier.citedreferenceDeleyrolle LP, Reynolds BA. Isolation, expansion and differentiation of adult mammalian neural stem and progenitor cells using the neurosphere assay. Methods Mol Biol 2009; 549: 91 – 101.en_US
dc.identifier.citedreferenceDev D, Saxena M, Paranjape AN, et al. Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture. PLoS One 2009; 4: e5329.en_US
dc.identifier.citedreferenceZhang Q, Nguyen AL, Shi S, et al. Three‐dimensional spheroid culture of human gingiva‐derived mesenchymal stem cells enhances mitigation of chemotherapy‐induced oral mucositis. Stem Cells Dev 2012; 21: 937 – 947.en_US
dc.identifier.citedreferenceMcLelland BT, Gravano D, Castilho J, et al. Enhanced isolation of adult thymic epithelial cell subsets for multiparameter flow cytometry and gene expression analysis. J Immunol Methods 2011; 367: 85 – 94.en_US
dc.identifier.citedreferenceDe Wynter EA, Coutinho LH, Pei X, et al. Comparison of purity and enrichment of CD34+ cells from bone marrow, umbilical cord and peripheral blood (primed for apheresis) using five separation systems. Stem Cells 1995; 13: 524 – 532.en_US
dc.identifier.citedreferenceAragaki T, Michi Y, Katsube K, et al. Comprehensive keratin profiling reveals different histopathogenesis of keratocystic odontogenic tumor and orthokeratinized odontogenic cyst. Hum Pathol 2010; 41: 1718 – 1725.en_US
dc.identifier.citedreferenceBalasubramanian S, Eckert RL. Keratinocyte proliferation, differentiation, and apoptosis‐differential mechanisms of regulation by curcumin, EGCG, and apigenin. Toxicol Appl Pharmacol 2007; 224: 214 – 219.en_US
dc.identifier.citedreferenceReynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF‐responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 1996; 175: 1 – 13.en_US
dc.identifier.citedreferenceGuzmán‐Ramírez N, Völler M, Wetterwald A, et al. In vitro propagation and characterization of neoplastic stem/progenitor‐like cells from human prostate cancer tissue. Prostate 2009; 69: 1683 – 1693.en_US
dc.identifier.citedreferenceOkomato A, Chikamatsu K, Sakakura K, et al. Expansion and characterization of cancer stem‐like cells in squamous cell carcinoma of the head and neck. Oral Oncol 2009; 45: 633 – 639.en_US
dc.identifier.citedreferenceZhou L, Wei X, Cheng L, et al. CD133, one of the markers of cancer stem cells in Hep‐2 cell line. Laryngoscope 2007; 117: 455 – 460.en_US
dc.identifier.citedreferenceChiou SH, Yu CC, Huang CY, et al. Positive correlations of Oct‐4 and Nanog in oral cancer stem‐like cells and high‐grade oral squamous cell carcinoma. Clin Cancer Res 2008; 14: 4085 – 4095.en_US
dc.identifier.citedreferenceZhang Q, Shi S, Yen Y, et al. A subpopulation of CD133(+) cancer stem‐like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett 2010; 289: 151 – 160.en_US
dc.identifier.citedreferenceGinestier C, Hur MH, Charafe‐Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1: 555 – 567.en_US
dc.identifier.citedreferenceChen YC, Chen YW, Hsu HS, et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun 2009; 385: 307 – 313.en_US
dc.identifier.citedreferenceClay MR, Tabor M, Owen JH, et al. Single‐marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck 2010; 32: 1195 – 1201.en_US
dc.identifier.citedreferenceMimeault M, Batra SK. New advances on critical implications of tumor‐ and metastasis‐initiating cells in cancer progression, treatment resistance and disease recurrence. Histol Histopathol 2010; 25: 1057 – 1073.en_US
dc.identifier.citedreferenceReya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105 – 111.en_US
dc.identifier.citedreferencePrince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 2007; 104: 973 – 978.en_US
dc.identifier.citedreferenceRudland PS, Barraclough R, Fernig DG, et al. Growth and differentiation of the normal mammary gland and its tumors. Biochem Soc Symp 1998; 63: 1 – 20.en_US
dc.identifier.citedreferenceWeissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000; 100: 157 – 168.en_US
dc.identifier.citedreferenceMorrison SJ, Wandycz AM, Hemmati HD, et al. Identification of a lineage of multipotent hematopoietic progenitors. Development 1997; 124: 1929 – 1939.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.