Show simple item record

Resolution of hyposmotic stress in isolated mouse ventricular myocytes causes sealing of t‐tubules

dc.contributor.authorMoench, I.en_US
dc.contributor.authorMeekhof, K. E.en_US
dc.contributor.authorCheng, L. F.en_US
dc.contributor.authorLopatin, A. N.en_US
dc.date.accessioned2013-07-08T17:45:33Z
dc.date.available2014-09-02T14:12:52Zen_US
dc.date.issued2013-07en_US
dc.identifier.citationMoench, I.; Meekhof, K. E.; Cheng, L. F.; Lopatin, A. N. (2013). "Resolution of hyposmotic stress in isolated mouse ventricular myocytes causes sealing of t‐tubules." Experimental Physiology 98(7). <http://hdl.handle.net/2027.42/98789>en_US
dc.identifier.issn0958-0670en_US
dc.identifier.issn1469-445Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98789
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.titleResolution of hyposmotic stress in isolated mouse ventricular myocytes causes sealing of t‐tubulesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USAen_US
dc.identifier.pmid23585327en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98789/1/expphysiol.2013.072470.pdf
dc.identifier.doi10.1113/expphysiol.2013.072470en_US
dc.identifier.sourceExperimental Physiologyen_US
dc.identifier.citedreferenceShaffer RF, Baumgarten CM & Damiano RJ Jr ( 1998 ). Prevention of cellular edema directly caused by hypothermic cardioplegia: studies in isolated human and rabbit atrial myocytes. J Thorac Cardiovasc Surg 115, 1189 – 1195.en_US
dc.identifier.citedreferenceMissan S, Linsdell P & McDonald TF ( 2006 ). Role of kinases and G‐proteins in the hyposmotic stimulation of cardiac I Ks. Biochim Biophys Acta 1758, 1641 – 1652.en_US
dc.identifier.citedreferenceMissan S, Linsdell P & McDonald TF ( 2008 ). Involvement of tyrosine kinase in the hyposmotic stimulation of I Ks in guinea‐pig ventricular myocytes. Pflugers Arch 456, 489 – 500.en_US
dc.identifier.citedreferenceMissan S, Shuba LM, Zhabyeyev P & McDonald TF ( 2011 ). Osmotic modulation of slowly activating I Ks in guinea‐pig ventricular myocytes. Cardiovasc Res 91, 429 – 436.en_US
dc.identifier.citedreferencePriebe L & Beuckelmann DJ ( 1998 ). Cell swelling causes the action potential duration to shorten in guinea‐pig ventricular myocytes by activating I KATP. Pflugers Arch 436, 894 – 898.en_US
dc.identifier.citedreferenceRees SA, Vandenberg JI, Wright AR, Yoshida A & Powell T ( 1995 ). Cell swelling has differential effects on the rapid and slow components of delayed rectifier potassium current in guinea pig cardiac myocytes. J Gen Physiol 106, 1151 – 1170.en_US
dc.identifier.citedreferenceRoos KP ( 1986 ). Length, width, and volume changes in osmotically stressed myocytes. Am J Physiol Heart Circ Physiol 251, H1373 – H1378.en_US
dc.identifier.citedreferenceSoeller C & Cannell MB ( 1999 ). Examination of the transverse tubular system in living cardiac rat myocytes by 2‐photon microscopy and digital image‐processing techniques. Circ Res 84, 266 – 275.en_US
dc.identifier.citedreferenceSorota S ( 1992 ). Swelling‐induced chloride‐sensitive current in canine atrial cells revealed by whole‐cell patch‐clamp method. Circ Res 70, 679 – 687.en_US
dc.identifier.citedreferenceStewart JM & Page E ( 1978 ). Improved stereological techniques for studying myocardial cell growth: application to external sarcolemma, T system, and intercalated disks of rabbit and rat hearts. J Ultrastruct Res 65, 119 – 134.en_US
dc.identifier.citedreferenceTomita F, Bassett AL, Myerburg RJ & Kimura S ( 1994 ). Diminished transient outward currents in rat hypertrophied ventricular myocytes. Circ Res 75, 296 – 303.en_US
dc.identifier.citedreferenceVandenberg JI, Rees SA, Wright AR & Powell T ( 1996 ). Cell swelling and ion transport pathways in cardiac myocytes. Cardiovasc Res 32, 85 – 97.en_US
dc.identifier.citedreferenceVandenberg JI, Yoshida A, Kirk K & Powell T ( 1994 ). Swelling‐activated and isoprenaline‐activated chloride currents in guinea pig cardiac myocytes have distinct electrophysiology and pharmacology. J Gen Physiol 104, 997 – 1017.en_US
dc.identifier.citedreferenceWang GL, Wang GX, Yamamoto S, Ye L, Baxter H, Hume JR & Duan D ( 2005 ). Molecular mechanisms of regulation of fast‐inactivating voltage‐dependent transient outward K + current in mouse heart by cell volume changes. J Physiol 568, 423 – 443.en_US
dc.identifier.citedreferenceWhalley DW, Hemsworth PD & Rasmussen HH ( 1991 ). Sodium–hydrogen exchange in guinea‐pig ventricular muscle during exposure to hyperosmolar solutions. J Physiol 444, 193 – 212.en_US
dc.identifier.citedreferenceWhalley DW, Hool LC, Ten Eick RE & Rasmussen HH ( 1993 ). Effect of osmotic swelling and shrinkage on Na + ‐K + pump activity in mammalian cardiac myocytes. Am J Physiol Cell Physiol 265, C1201 – C1210.en_US
dc.identifier.citedreferenceWickenden AD, Jegla TJ, Kaprielian R & Backx PH ( 1999 ). Regional contributions of Kv1.4, Kv4.2, and Kv4.3 to transient outward K + current in rat ventricle. Am J Physiol Heart Circ Physiol 276, H1599 – H1607.en_US
dc.identifier.citedreferenceXu H, Guo W & Nerbonne JM ( 1999 ). Four kinetically distinct depolarization‐activated K + currents in adult mouse ventricular myocytes. J Gen Physiol 113, 661 – 678.en_US
dc.identifier.citedreferenceYasui K, Anno T, Kamiya K, Boyett MR, Kodama I & Toyama J ( 1993 ). Contribution of potassium accumulation in narrow extracellular spaces to the genesis of nicorandil‐induced large inward tail current in guinea‐pig ventricular cells. Pflugers Arch 422, 371 – 379.en_US
dc.identifier.citedreferenceArgiro V ( 1981 ). Excitation‐contraction uncoupling of striated muscle fibres by formamide treatment: evidence of detubulation. J Muscle Res Cell Motil 2, 283 – 294.en_US
dc.identifier.citedreferenceBodi I, Muth JN, Hahn HS, Petrashevskaya NN, Rubio M, Koch SE, Varadi G & Schwartz A ( 2003 ). Electrical remodeling in hearts from a calcium‐dependent mouse model of hypertrophy and failure: complex nature of K + current changes and action potential duration. J Am Coll Cardiol 41, 1611 – 1622.en_US
dc.identifier.citedreferenceBorg JJ, Hancox JC, Hogg DS, James AF & Kozlowski RZ ( 2004 ). Actions of the anti‐oestrogen agent clomiphene on outward K + currents in rat ventricular myocytes. Clin Exp Pharmacol Physiol 31, 86 – 95.en_US
dc.identifier.citedreferenceBoyett MR, Frampton JE & Kirby MS ( 1991 ). The length, width and volume of isolated rat and ferret ventricular myocytes during twitch contractions and changes in osmotic strength. Exp Physiol 76, 259 – 270.en_US
dc.identifier.citedreferenceBrette F, Calaghan SC, Lappin S, White E, Colyer J & Le Guennec JY ( 2000 ). Biphasic effects of hyposmotic challenge on excitation‐contraction coupling in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 279, H1963 – H1971.en_US
dc.identifier.citedreferenceBrette F, Komukai K & Orchard CH ( 2002 ). Validation of formamide as a detubulation agent in isolated rat cardiac cells. Am J Physiol Heart Circ Physiol 283, H1720 – H1728.en_US
dc.identifier.citedreferenceBrette F & Orchard C ( 2007 ). Resurgence of cardiac t‐tubule research. Physiology (Bethesda) 22, 167 – 173.en_US
dc.identifier.citedreferenceBrette F, Salle L & Orchard CH ( 2004 ). Differential modulation of L‐type Ca 2+ current by SR Ca 2+ release at the T‐tubules and surface membrane of rat ventricular myocytes. Circ Res 95, e1 – e7.en_US
dc.identifier.citedreferenceCazorla O, Pascarel C, Brette F & Le Guennec JY ( 1999 ). Modulation of ions channels and membrane receptors activities by mechanical interventions in cardiomyocytes: possible mechanisms for mechanosensitivity. Prog Biophys Mol Biol 71, 29 – 58.en_US
dc.identifier.citedreferenceChase A & Orchard CH ( 2011 ). Ca efflux via the sarcolemmal Ca ATPase occurs only in the t‐tubules of rat ventricular myocytes. J Mol Cell Cardiol 50, 187 – 193.en_US
dc.identifier.citedreferenceCheng L, Wang F & Lopatin AN ( 2011 ). Metabolic stress in isolated mouse ventricular myocytes leads to remodeling of t‐tubules. Am J Physiol Heart Circ Physiol 301, H1984 – H1995.en_US
dc.identifier.citedreferenceClark RB, Tremblay A, Melnyk P, Allen BG, Giles WR & Fiset C ( 2001 ). T‐tubule localization of the inward‐rectifier K + channel in mouse ventricular myocytes: a role in K + accumulation. J Physiol 537, 979 – 992.en_US
dc.identifier.citedreferenceEisenberg B & Eisenberg RS ( 1968 ). Selective disruption of the sarcotubular system in frog sartorius muscle. A quantitative study with exogenous peroxidase as a marker. J Cell Biol 39, 451 – 467.en_US
dc.identifier.citedreferenceGroh WJ, Gibson KJ & Maylie JG ( 1996 ). Hypotonic‐induced stretch counteracts the efficacy of the class III antiarrhythmic agent E‐4031 in guinea pig myocytes. Cardiovasc Res 31, 237 – 245.en_US
dc.identifier.citedreferenceHamill OP, Marty A, Neher E, Sakmann B & Sigworth FJ ( 1981 ). Improved patch‐clamp techniques for high‐resolution current recording from cells and cell‐free membrane patches. Pflugers Arch 391, 85 – 100.en_US
dc.identifier.citedreferenceHandy JR Jr, Dorman BH, Cavallo MJ, Hinton RB, Roy RC, Crawford FA & Spinale FG ( 1996 ). Direct effects of oxygenated crystalloid or blood cardioplegia on isolated myocyte contractile function. J Thorac Cardiovasc Surg 112, 1064 – 1072.en_US
dc.identifier.citedreferenceHowell JN ( 1969 ). A lesion of the transverse tubules of skeletal muscle. J Physiol 201, 515 – 533.en_US
dc.identifier.citedreferenceHu L, Ma J, Zhang P & Zheng J ( 2009 ). Extracellular hypotonicity induces disturbance of sodium currents in rat ventricular myocytes. Physiol Res 58, 807 – 815.en_US
dc.identifier.citedreferenceKawai M, Hussain M & Orchard CH ( 1999 ). Excitation‐contraction coupling in rat ventricular myocytes after formamide‐induced detubulation. Am J Physiol Heart Circ Physiol 277, H603 – H609.en_US
dc.identifier.citedreferenceKloner RA & Jennings RB ( 2001 ). Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation 104, 2981 – 2989.en_US
dc.identifier.citedreferenceLi GR, Zhang M, Satin LS & Baumgarten CM ( 2002 ). Biphasic effects of cell volume on excitation‐contraction coupling in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol 282, H1270 – H1277.en_US
dc.identifier.citedreferenceLondon B, Jeron A, Zhou J, Buckett P, Han X, Mitchell GF & Koren G ( 1998 ). Long QT and ventricular arrhythmias in transgenic mice expressing the N terminus and first transmembrane segment of a voltage‐gated potassium channel. Proc Natl Acad Sci U S A 95, 2926 – 2931.en_US
dc.identifier.citedreferenceLuo A‐t, Luo H‐y, Hu X‐w, Gao L‐l, Liang H‐m, Tang M & Hescheler J ( 2010 ). Hyposmotic challenge modulates function of L‐type calcium channel in rat ventricular myocytes through protein kinase C. Acta Pharmacol Sin 31, 1438 – 1446.en_US
dc.identifier.citedreferenceMcLerie M & Lopatin AN ( 2003 ). Dominant‐negative suppression of I K1 in the mouse heart leads to altered cardiac excitability. J Mol Cell Cardiol 35, 367 – 378.en_US
dc.identifier.citedreferenceMatsuda N, Hagiwara N, Shoda M, Kasanuki H & Hosoda S ( 1996 ). Enhancement of the L‐type Ca 2+ current by mechanical stimulation in single rabbit cardiac myocytes. Circ Res 78, 650 – 659.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.