Show simple item record

Cryptic B Cell Response to Renal Transplantation

dc.contributor.authorLynch, R. J.en_US
dc.contributor.authorSilva, I. A.en_US
dc.contributor.authorChen, B. J.en_US
dc.contributor.authorPunch, J. D.en_US
dc.contributor.authorCascalho, M.en_US
dc.contributor.authorPlatt, J. L.en_US
dc.date.accessioned2013-07-08T17:45:45Z
dc.date.available2014-09-02T14:12:53Zen_US
dc.date.issued2013-07en_US
dc.identifier.citationLynch, R. J.; Silva, I. A.; Chen, B. J.; Punch, J. D.; Cascalho, M.; Platt, J. L. (2013). "Cryptic B Cell Response to Renal Transplantation." American Journal of Transplantation 13(7): 1713-1723. <http://hdl.handle.net/2027.42/98816>en_US
dc.identifier.issn1600-6135en_US
dc.identifier.issn1600-6143en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98816
dc.description.abstractTransplantation reliably evokes allo‐specific B cell and T cell responses in mice. Yet, human recipients of kidney transplants with normal function usually exhibit little or no antibody specific for the transplant donor during the early weeks and months after transplantation. Indeed, the absence of antidonor antibodies is taken to reflect effective immunosuppressive therapy and to predict a favorable outcome. Whether the absence of donor‐specific antibodies reflects absence of a B cell response to the donor, tolerance to the donor or immunity masked by binding of donor‐specific antibodies to the graft is not known. To distinguish between these possibilities, we devised a novel ELISPOT, using cultured donor, recipient and third‐party fibroblasts as targets. We enumerated donor‐specific antibody‐secreting cells in the blood of nine renal allograft recipients with normal kidney function before and after transplantation. Although none of the nine subjects had detectable donor‐specific antibodies before or after transplantation, all exhibited increases in the frequency of donor‐specific antibody‐secreting cells eight weeks after transplantation. The responses were directed against the donor HLA‐class I antigens. The increase in frequency of donor‐specific antibody‐secreting cells after renal transplantation indicates that B cells respond specifically to the transplant donor more often than previously thought. The authors report that clinical transplantation evokes an appreciable B cell response in most, if not all, transplant recipients, raising the prospect that accommodation might be a more common outcome than previously thought. See editorial by Clatworthy on page 1629.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAccommodationen_US
dc.subject.otherRejectionen_US
dc.subject.otherRenal Transplanten_US
dc.subject.otherToleranceen_US
dc.titleCryptic B Cell Response to Renal Transplantationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23750851en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98816/1/ajt12308.pdf
dc.identifier.doi10.1111/ajt.12308en_US
dc.identifier.sourceAmerican Journal of Transplantationen_US
dc.identifier.citedreferenceMantovani B, Rabinovitch M, Nussenzweig V. Phagocytosis of immune complexes by macrophages. Different roles of the macrophage receptor sites for complement (C3) and for immunoglobulin (IgG). J Exp Med 1972; 135: 780 – 792.en_US
dc.identifier.citedreferenceJourdan M, Caraux A, De Vos J, et al. An in vitro model of differentiation of memory B cells into plasmablasts and plasma cells including detailed phenotypic and molecular characterization. Blood 2009; 114: 5173 – 5181.en_US
dc.identifier.citedreferenceParker W, Bruno D, Holzknecht ZE, Platt JL. Characterization and affinity isolation of xenoreactive human natural antibodies. J Immunol 1994; 153: 3791 – 3803.en_US
dc.identifier.citedreferenceLarson LN, Johansson C, Lindholm L. Localization of antibody‐secreting cells against human colon adenocarcinoma cell lines using the enzyme‐linked immunospot assay. Int Arch Allergy Appl Immunol 1988; 87: 405 – 408.en_US
dc.identifier.citedreferenceSchneider YJ, Tulkens P, de Duve C, Trouet A. Fate of plasma membrane during endocytosis. I. Uptake and processing of anti‐plasma membrane and control immunoglobulins by cultured fibroblasts. J Cell Biol 1979; 82: 449 – 465.en_US
dc.identifier.citedreferencePlatt JL, Cascalho M. Donor specific antibodies after transplantation. Pediatr Transplant 2011; 15: 686 – 690.en_US
dc.identifier.citedreferenceZhou ZH, Notkins AL. Polyreactive antigen‐binding B (PAB‐) cells are widely distributed and the PAB population consists of both B‐1+ and B‐1− phenotypes. Clin Exp Immunol 2004; 137: 88 – 100.en_US
dc.identifier.citedreferenceZhou ZH, Tzioufas AG, Notkins AL. Properties and function of polyreactive antibodies and polyreactive antigen‐binding B cells. J Autoimmun 2007; 29: 219 – 228.en_US
dc.identifier.citedreferenceMestre M, Massip E, Bas J, et al. Longitudinal study of the frequency of cytotoxic T cell precursors in kidney allograft recipients. Clin Exp Immunol 1996; 104: 108 – 114.en_US
dc.identifier.citedreferenceBaker RJ, Hernandez‐Fuentes MP, Brookes PA, Chaudhry AN, Lechler RI. The role of the allograft in the induction of donor‐specific T cell hyporesponsiveness. Transplantation 2001; 72: 480 – 485.en_US
dc.identifier.citedreferenceStiver HG, Graves P, Meiklejohn G, Schroter G, Eickhoff TC. Impaired serum antibody response to inactivated influenza A and B vaccine in renal transplant recipients. Infect Immun 1977; 16: 738 – 741.en_US
dc.identifier.citedreferenceAdmon D, Engelhard D, Strauss N, Goldman N, Zakay‐Rones Z. Antibody response to influenza immunization in patients after heart transplantation. Vaccine 1997; 15: 1518 – 1522.en_US
dc.identifier.citedreferenceCandon S, Thervet E, Lebon P, et al. Humoral and cellular immune responses after influenza vaccination in kidney transplant recipients. Am J Transplant 2009; 9: 2346 – 2354.en_US
dc.identifier.citedreferenceMeyer S, Adam M, Schweiger B, et al. Antibody response after a single dose of an AS03‐adjuvanted split‐virion influenza A (H1N1) vaccine in heart transplant recipients. Transplantation 2011; 91: 1031 – 1035.en_US
dc.identifier.citedreferenceHidalgo LG, Campbell PM, Sis B, et al. De novo donor‐specific antibody at the time of kidney transplant biopsy associates with microvascular pathology and late graft failure. Am J Transplant 2009; 9: 2532 – 2541.en_US
dc.identifier.citedreferenceCooper JE, Gralla J, Cagle L, Goldberg R, Chan L, Wiseman AC. Inferior kidney allograft outcomes in patients with de novo donor‐specific antibodies are due to acute rejection episodes. Transplantation 2011; 91: 1103 – 1109.en_US
dc.identifier.citedreferenceEverett ML, Lin SS, Worrell SS, Platt JL, Parker W. The footprint of antibody bound to pig cells: Evidence of complex surface topology. Biochem Biophys Res Commun 2003; 301: 751 – 757.en_US
dc.identifier.citedreferenceParker W, Stitzenberg KB, Yu PB, et al. Biophysical characteristics of anti‐Gal(alpha)1‐3Gal IgM binding to cell surfaces: Implications for xenotransplantation. Transplantation 2001; 71: 440 – 446.en_US
dc.identifier.citedreferencePlatt JL, LeBien TW, Michael AF. Stages of renal ontogenesis identified by monoclonal antibodies reactive with lymphohemopoietic differentiation antigens. J Exp Med 1983; 157: 155 – 172.en_US
dc.identifier.citedreferenceLynch RJ, Platt JL. Accommodation in organ transplantation. Curr Opin Organ Transplant 2008; 13: 165 – 170.en_US
dc.identifier.citedreferencePelletier RP, Hennessy PK, Adams PW, VanBuskirk AM, Ferguson RM, Orosz CG. Clinical significance of MHC‐reactive alloantibodies that develop after kidney or kidney‐pancreas transplantation. Am J Transplant 2002; 2: 134 – 141.en_US
dc.identifier.citedreferenceKoch CA, Khalpey ZI, Platt JL. Accommodation: Preventing injury in transplantation and disease. J Immunol 2004; 172: 5143 – 5148.en_US
dc.identifier.citedreferencePlatt JL, Vercellotti GM, Dalmasso AP, et al. Transplantation of discordant xenografts: A review of progress. Immunol Today 1990; 11: 450 – 457.en_US
dc.identifier.citedreferenceGorer PA. The antigenic basis of tumour transplantation. J Pathol Bacteriol 1938; 47: 231 – 252.en_US
dc.identifier.citedreferenceGorer PA. The antibody response to skin homografts in mice. Ann NY Acad Sci 1955; 59: 365 – 373.en_US
dc.identifier.citedreferenceGorer P. Some recent work on tumor immunity. Adv Cancer Res 1956; 4: 149 – 186.en_US
dc.identifier.citedreferenceStetson CA. The role of humoral antibody in the homograft reaction. Adv Immunol 1963; 3: 97 – 130.en_US
dc.identifier.citedreferenceAuchincloss H, Jr., Ghobrial RR, Russell PS, Winn HJ. Prevention of alloantibody formation after skin grafting without prolongation of graft survival by anti‐L3T4 in vivo. Transplantation 1988; 45: 1118 – 1123.en_US
dc.identifier.citedreferenceKlein J, Chiang C, Lofgreen J, Steinmuller D. Participation of H‐2 regions in heart‐transplant rejection. Transplantation 1976; 22: 384 – 390.en_US
dc.identifier.citedreferenceAmos DB, Gorer PA, Mikulska BM, Billingham RE, Sparrow EM. An antibody response to skin homografts in mice. Br J Exp Pathol 1954; 35: 203 – 208.en_US
dc.identifier.citedreferenceKlein J, Hauptfeld V, Hauptfeld M. Evidence for a third, IR‐associated histocompatibility region in the H‐2 complex of the mouse. Immunogenetics 1974; 1: 45 – 56.en_US
dc.identifier.citedreferenceKlein J, Geib R, Chiang C, Hauptfeld V. Histocompatibility antigens controlled by the I region of the murine H‐2 complex. I. Mapping of H‐2A and H‐2C loci. J Exp Med 1976; 143: 1439 – 1452.en_US
dc.identifier.citedreferenceSnell GD. The genetics of transplantation. J Natl Cancer Inst 1953; 14: 691 – 704.en_US
dc.identifier.citedreferenceTerasaki P, McClelland JP. Microdroplet assay of human serum cytotoxins. Nature 1964; 204: 998 – 1000.en_US
dc.identifier.citedreferenceMatas AJ, Leduc R, Rush D, et al. Histopathologic clusters differentiate subgroups within the nonspecific diagnoses of CAN or CR: Preliminary data from the DeKAF study. Am J Transplant 2010; 10: 315 – 323.en_US
dc.identifier.citedreferenceMartin S, Dyer PA, Mallick NP, Gokal R, Harris R, Johnson RW. Posttransplant antidonor lymphocytotoxic antibody production in relation to graft outcome. Transplantation 1987; 44: 50 – 53.en_US
dc.identifier.citedreferenceHalloran PF, Schlaut J, Solez K, Srinivasa NS. The significance of the anti‐class I response. II. Clinical and pathologic features of renal transplants with anti‐class I‐like antibody. Transplantation 1992; 53: 550 – 555.en_US
dc.identifier.citedreferenceScornik JC, Salomon DR, Lim PB, Howard RJ, Pfaff WW. Posttransplant antidonor antibodies and graft rejection. Evaluation by two‐color flow cytometry. Transplantation 1989; 47: 287 – 290.en_US
dc.identifier.citedreferenceChristiaans MH, Overhof‐de Roos R, Nieman F, van Hooff JP, van den Berg‐Loonen EM. Donor‐specific antibodies after transplantation by flow cytometry: Relative change in fluorescence ratio most sensitive risk factor for graft survival. Transplantation 1998; 65: 427 – 433.en_US
dc.identifier.citedreferenceVarnavidou‐Nicolaidou A, Iniotaki‐Theodoraki AG, Doxiadis II, et al. Expansion of humoral donor‐specific alloreactivity after renal transplantation correlates with impaired graft outcome. Hum Immunol 2005; 66: 985 – 988.en_US
dc.identifier.citedreferenceCardarelli F, Pascual M, Tolkoff‐Rubin N, et al. Prevalence and significance of anti‐HLA and donor‐specific antibodies long‐term after renal transplantation. Transplant Int 2005; 18: 532 – 540.en_US
dc.identifier.citedreferenceZhang Q, Liang LW, Gjertson DW, et al. Development of posttransplant antidonor HLA antibodies is associated with acute humoral rejection and early graft dysfunction. Transplantation 2005; 79: 591 – 598.en_US
dc.identifier.citedreferenceHo EK, Vlad G, Vasilescu ER, et al. Pre‐ and posttransplantation allosensitization in heart allograft recipients: Major impact of de novo alloantibody production on allograft survival. Hum Immunol 2011; 72: 5 – 10.en_US
dc.identifier.citedreferenceLi X, Ishida H, Yamaguchi Y, Tanabe K. Poor graft outcome in recipients with de novo donor‐specific anti‐HLA antibodies after living related kidney transplantation. Transplant Int 2008; 21: 1145 – 1152.en_US
dc.identifier.citedreferenceSmith JD, Banner NR, Hamour IM, et al. De novo donor HLA‐specific antibodies after heart transplantation are an independent predictor of poor patient survival. Am J Transplant 2011; 11: 312 – 319.en_US
dc.identifier.citedreferenceHirai T, Kohei N, Omoto K, Ishida H, Tanabe K. Significance of low‐level DSA detected by solid‐phase assay in association with acute and chronic antibody‐mediated rejection. Transplant Int 2012; 25: 925 – 934.en_US
dc.identifier.citedreferenceKohei N, Hirai T, Omoto K, Ishida H, Tanabe K. Chronic antibody‐mediated rejection is reduced by targeting B‐cell immunity during an introductory period. Am J Transplant 2012; 12: 469 – 476.en_US
dc.identifier.citedreferenceNemazee DA, Burki K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti‐MHC class I antibody genes. Nature 1989; 337: 562 – 566.en_US
dc.identifier.citedreferenceGoodnow CC, Crosbie J, Jorgensen H, Brink RA, Basten A. Induction of self‐tolerance in mature peripheral B lymphocytes. Nature 1989; 342: 385 – 391.en_US
dc.identifier.citedreferenceFan X, Ang A, Pollock‐BarZiv SM, et al. Donor‐specific B‐cell tolerance after ABO‐incompatible infant heart transplantation. Nat Med 2004; 10: 1227 – 1233.en_US
dc.identifier.citedreferenceMohanakumar T, Waldrep JC, Phibbs M, Mendez‐Picon G, Kaplan AM, Lee HM. Serological characterization of antibodies eluted from chronically rejected human renal allografts. Transplantation 1981; 32: 61 – 66.en_US
dc.identifier.citedreferenceMartin L, Guignier F, Mousson C, Rageot D, Justrabo E, Rifle G. Detection of donor‐specific anti‐HLA antibodies with flow cytometry in eluates and sera from renal transplant recipients with chronic allograft nephropathy. Transplantation 2003; 76: 395 – 400.en_US
dc.identifier.citedreferenceBriggs D, Zehnder D, Higgins RM. Development of non‐donor‐specific HLA antibodies after kidney transplantation: Frequency and clinical implications. Contrib Nephrol 2009; 162: 107 – 116.en_US
dc.identifier.citedreferenceHiggins R, Lowe D, Hathaway M, et al. Rises and falls in donor‐specific and third‐party HLA antibody levels after antibody incompatible transplantation. Transplantation 2009; 87: 882 – 888.en_US
dc.identifier.citedreferenceIshida H, Hirai T, Kohei N, Yamaguchi Y, Tanabe K. Significance of qualitative and quantitative evaluations of anti‐HLA antibodies in kidney transplantation. Transplant Int 2011; 24: 150 – 157.en_US
dc.identifier.citedreferenceCollins BH, Cotterell AH, McCurry KR, et al. Cardiac xenografts between primate species provide evidence for the importance of the alpha‐galactosyl determinant in hyperacute rejection. J Immunol 1995; 154: 5500 – 5510.en_US
dc.identifier.citedreferenceMcCurry KR, Parker W, Cotterell AH, et al. Humoral responses to pig‐to‐baboon cardiac transplantation: Implications for the pathogenesis and treatment of acute vascular rejection and for accommodation. Hum Immunol 1997; 58: 91 – 105.en_US
dc.identifier.citedreferenceSedgwick JD, Holt PG. A solid‐phase immunoenzymatic technique for the enumeration of specific antibody‐secreting cells. J Immunol Methods 1983; 57: 301 – 309.en_US
dc.identifier.citedreferenceCzerkinsky CC, Nilsson L, Nygren H, Ouchterlony O, Tarkowski A. A solid‐phase enzyme‐linked immunospot (ElISPOT) assay for enumeration of specific antibody‐secreting cells. J Immunol Methods 1983; 65: 109 – 121.en_US
dc.identifier.citedreferenceTarkowski A, Czerkinsky C, Nilsson LA. Simultaneous induction of rheumatoid factor‐ and antigen‐specific antibody‐secreting cells during the secondary immune response in man. Clin Exp Immunol 1985; 61: 379 – 387.en_US
dc.identifier.citedreferencePerry DK, Pollinger HS, Burns JM, et al. Two novel assays of alloantibody‐secreting cells demonstrating resistance to desensitization with IVIG and rATG. Am J Transplant 2008; 8: 133 – 143.en_US
dc.identifier.citedreferenceHeidt S, Roelen DL, de Vaal YJ, et al. A NOVel ELISPOT assay to quantify HLA‐specific B cells in HLA‐immunized individuals. Am J Transplant 2012; 12: 1469 – 1478.en_US
dc.identifier.citedreferenceBernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 2002; 298: 2199 – 2202.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.