Show simple item record

Electrodynamics of the high‐latitude trough: Its relationship with convection flows and field‐aligned currents

dc.contributor.authorZou, Shashaen_US
dc.contributor.authorMoldwin, Mark B.en_US
dc.contributor.authorNicolls, Michael J.en_US
dc.contributor.authorRidley, Aaron J.en_US
dc.contributor.authorCoster, Anthea J.en_US
dc.contributor.authorYizengaw, Endawokeen_US
dc.contributor.authorLyons, Larry R.en_US
dc.contributor.authorDonovan, Eric F.en_US
dc.date.accessioned2013-07-08T17:45:45Z
dc.date.available2014-07-01T15:53:39Zen_US
dc.date.issued2013-05en_US
dc.identifier.citationZou, Shasha; Moldwin, Mark B.; Nicolls, Michael J.; Ridley, Aaron J.; Coster, Anthea J.; Yizengaw, Endawoke; Lyons, Larry R.; Donovan, Eric F. (2013). "Electrodynamics of the high‐latitude trough: Its relationship with convection flows and field‐aligned currents." Journal of Geophysical Research: Space Physics 118(5): 2565-2572. <http://hdl.handle.net/2027.42/98817>en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98817
dc.description.abstractWe present a detailed case study of the electrodynamics of a high‐latitude trough observed at ~ 12 UT (~1 MLT) on 8 March 2008 using multiple instruments, including incoherent scattering radar (ISR), GPS total electron content (TEC), magnetometers, and auroral imager. The electron density within the trough dropped as much as 80% within 6 minutes. This trough was collocated with a counterclockwise convection flow vortex, indicating divergent horizontal electric fields and currents. Together with a collocated dark area shown in auroral images, the observations provide strong evidence for an existence of downward field‐aligned currents (FACs) collocated with the high‐latitude trough. This is further supported by assimilative mapping of ionospheric electrodynamics results. In addition, the downward FACs formed at about the same time as a substorm onset and east of the Harang reversal, suggesting it is part of the substorm current wedge. It has long been a puzzle why this type of high‐latitude trough predominantly occurs just east of the Harang reversal in the postmidnight sector. We suggest that the high‐latitude trough is associated with the formation of downward FACs of the substorm current system, which usually occur just east of the Harang reversal. In addition, we find that the ionospheric electron temperature within the high latitude trough decreases in the F region while increasing in the E region. We discuss possible mechanisms responsible for the complex change in electron temperature, such as ion composition change and/or presence of downward FACs. Key Points Multi‐instrument study of the high‐latitude trough electrodynamics Trough is associated with anti‐clockwise flow vortex and substorm downward FACs Complex Te profile observed in the trough and due to downward FACsen_US
dc.publisherUniv. of Calgaryen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherHarang Reversalen_US
dc.subject.otherField‐Aligned Currenten_US
dc.subject.otherIonospheric Convectionen_US
dc.subject.otherSubstormen_US
dc.subject.otherIonospheric Troughen_US
dc.subject.otherIonospheric Plasma Temperaturemen_US
dc.titleElectrodynamics of the high‐latitude trough: Its relationship with convection flows and field‐aligned currentsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98817/1/jgra50120.pdf
dc.identifier.doi10.1002/jgra.50120en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceMende, S. B., et al. ( 2008 ), The THEMIS array of ground‐based observatories for the study of auroral substorms, Space Sci. Rev., 141, 357 – 387, doi: 10.1007/s11214‐008‐9380‐x.en_US
dc.identifier.citedreferenceJayachandran, P. T., K. Hosokawa, J. W. MacDougall, S. Mushini, R. B. Langley, and K. Shiokawa ( 2009 ), GPS total electron content variations associated with a polar cap arc, J. Geophys. Res., 114, A12304, doi: 10.1029/2009JA014916.en_US
dc.identifier.citedreferenceJones, G. O. L., P. J. S. Williams, K. J. Winser, and M. Lockwood ( 1990 ), Chracteristics of the high‐latitude trough, Adv. Space Res., 10 ( 6 ), 1990.en_US
dc.identifier.citedreferenceKarlsson, T., and G. Marklund ( 1998 ), Simulations of effects of small‐scale auroral current closure in the return current region. Phys. Space Plasm., 15, 401 – 406.en_US
dc.identifier.citedreferenceKarlsson, T., N. Brenning, O. Marghitu, G. Marklund, and S. Buchert ( 2007 ), High‐altitude signatures of ionospheric density depletions caused by field‐aligned currents, arXiv:0704.1610v1.en_US
dc.identifier.citedreferenceKintner, P. M., H. Kil, C. Deehr, and P. Schuck ( 2002 ), Simultaneous total electron content and all‐sky camera measurements of an auroral arc, J. Geophys. Res., 107, 1127, doi: 10.1029/2001JA000110.en_US
dc.identifier.citedreferenceKosch, M. J., O. Amm, and M. W. J. Scourfield ( 2000 ), A plasma vortex revisited: The importance of including ionospheric conductivity measurements, J. Geophys. Res., 105 ( A11 ), 24,889 – 24,898, doi: 10.1029/2000JA900102.en_US
dc.identifier.citedreferenceKosch, M. J., M. J. W. Scourfield, and E. Nielsen ( 1998 ), A self‐consistent explanation for a plasma flow vortex associated with the brightening of an auroral arc, J. Geophys. Res., 103, 29,383 – 29,391.en_US
dc.identifier.citedreferenceLu, G. ( 2000 ), A Synthetic view of the magnetospheric-ionospheric current system associated with substorms, in Magnetospheric Current Systems, Geophys. Monogr. Ser., vol. 118, edited by S. Ohtani et al., pp. 199 – 207, AGU, Washington, D. C., doi: 10.1029/GM118p0199.en_US
dc.identifier.citedreferenceMa, S. Y., P. Liu, and K. Schlegel ( 2000 ), EISCAT observation of a high‐latitude ionization trough associated with a reversed westward plasma flow, Geophys. Res. Lett., 27 ( 20 ), 3269 – 3272, doi: 10.1029/2000GL000073.en_US
dc.identifier.citedreferenceMarklund, G. T. ( 2009 ), Electric fields and plasma processes in the auroral downward current region, below, within, and above the acceleration region, Space Sci. Rev., 142, 1 – 21, doi: 10.1007/s11214‐008‐9373‐9.en_US
dc.identifier.citedreferenceMcPherron, R. L., C. T. Russell, and M. Aubry ( 1973 ), Satellite studies of magnetospheric substorms on August 15, 1978, 9, Phenomenological model for substorms, J. Geophys. Res., 78, 3131 – 3149.en_US
dc.identifier.citedreferenceRichards, P. G., D. Bilitza, and D. Voglozin ( 2010 ), Ion density calculator (IDC): A new efficient model of ionospheric ion densities, Radio Sci., 45, RS5007, doi: 10.1029/2009RS004332.en_US
dc.identifier.citedreferenceRichmond, A. D., and Y. Kamide ( 1988 ), Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Technique, J. Geophys. Res., 93, 5741 – 5759, doi: 10.1029/JA093iA06p05741.en_US
dc.identifier.citedreferenceRidley, A. J., and E. A. Kihn ( 2004 ), Polar cap index comparisons with AMIE cross polar cap potential, electric field, and polar cap area, Geophys. Res. Lett., 31, L07801, doi: 10.1029/2003GL019113.en_US
dc.identifier.citedreferencePrikryl, P., P. T. Jayachandran, S. C. Mushini, D. Pokhotelov, J. W. MacDougall, E. Donovan, E. Spanswick, and J.‐P. St.‐Maurice ( 2010 ), GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum, Ann. Geophys., 28, 1307 – 1316, doi: 10.5194/angeo‐28‐1307‐2010.en_US
dc.identifier.citedreferencePrölss, G. W. ( 2007 ), The equatorward wall of the subauroral trough in the afternoon/evening sector, Ann. Geophys., 25, 645 – 659, doi: 10.5194/angeo-25-645-2007.en_US
dc.identifier.citedreferenceRodger, A. S., R. J. Moffett, and S. Quegan ( 1992 ), The role of ion drift in the formation of ionisation troughs in the mid‐ and high‐latitude ionosphere—A review, J. Atmos. Terr. Phys., 54, 1 – 30, doi: 10.1016/0021‐9169(92)90082‐V.en_US
dc.identifier.citedreferenceSchunk, R. W., J. J. Sojka, and M. D. Bowline ( 1987 ), Theoretical study of the effect of ionospheric return currents on the electron temperature, J. Geophys. Res., 92, 6013 – 6022.en_US
dc.identifier.citedreferenceSellek, R., G. J. Bailey, R. J. Moffett, R. A. Heelis, and P. C. Anderson ( 1991 ), Effects of large zonal plasma drifts on the subauroral ionosphere, J. Atmos. Terr. Phys., 53 ( 6–7 ), 557 – 565.en_US
dc.identifier.citedreferenceWilliams, P. J. S., and A. R. Jain ( 1986 ), Observations of the high latitude trough using EISCAT, J. Atmos. Terr. Phys., 48 ( 5 ), 423 – 434.en_US
dc.identifier.citedreferenceWinser, K. J., G. O. L. Jones, and P. J. S. Williams ( 1986 ), A quantitative study of the high latitude ionospheric trough using EISCAT's common programmes, J. Atmos. Terr. Phy., 48 ( 9–10 ), 893 – 904.en_US
dc.identifier.citedreferenceZettergren, M., J. Semeter, B. Burnett, W. Oliver, C. Heinselman, P.‐L. Blelly, and M. Diaz ( 2010 ), Dynamic variability in F‐region ionospheric composition at auroral arc boundaries, Ann. Geophys., 28, 651 – 664, doi: 10.5194/angeo‐28‐651‐2010.en_US
dc.identifier.citedreferenceZhang, B.‐C., Y. Kamide, and R.‐Y. Liu ( 2003 ), Response of electron temperature to field‐aligned current carried by thermal electrons: A model, J. Geophys. Res., 108, 1169, doi: 10.1029/2002JA009532.en_US
dc.identifier.citedreferenceZou, S., L. R. Lyons, C.‐P. Wang, A. Boudouridis, J. M. Ruohoniemi, P. C. Anderson, P. L. Dyson, and J. C. Devlin ( 2009a ), On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP, and IMAGE observations, J. Geophys. Res., 114, A01205, doi: 10.1029/2008JA013449.en_US
dc.identifier.citedreferenceZou, S., L. R. Lyons, M. J. Nicolls, C. J. Heinselman, and S. B. Mende ( 2009b ), Nightside ionospheric electrodynamics associated with substorms: PFISR and THEMIS ASI observations, J. Geophys. Res., 114, A12301, doi: 10.1029/2009JA014259.en_US
dc.identifier.citedreferenceZou, S., L. R. Lyons, and Y. Nishimura ( 2012 ), Mutual evolution of aurora and ionospheric electrodynamic features near the Harang reversal during substorms, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, Geophys. Monogr. Ser., vol. 197, edited by A. Keiling et al., pp. 159 – 169, AGU, Washington, D. C., doi: 10.1029/2011GM001163.en_US
dc.identifier.citedreferenceZou, S., M. B. Moldwin, A. Coster, L. R. Lyons, and M. J. Nicolls ( 2011 ), GPS TEC observations of dynamics of the mid‐latitude trough during substorms, Geophys. Res. Lett., 38, L14109, doi: 10.1029/2011GL048178.en_US
dc.identifier.citedreferenceAbe, T., T. Okuzawa, K. Oyama, H. Fukunishi, and R. Fujii ( 1991 ), Variations of thermal electron energy distribution associated with field‐aligned currents, Geophys. Res. Lett., 18 ( 2 ), 349 – 352, doi: 10.1029/91GL00033.en_US
dc.identifier.citedreferenceAmm, O. ( 1995 ), Direct determination of the local ionospheric Hall conductance distribution from two‐dimensional electric and magnetic field data: Application of the method using models of typical ionospheric electrodynamic situations, J. Geophys. Res., 100, 21,473.en_US
dc.identifier.citedreferenceAmm, O. ( 1998 ), Method of characteristics in spherical geometry applied to a Harang Discontinuity situation, Ann. Geophys., 16, 413.en_US
dc.identifier.citedreferenceDonovan, E., et al. ( 2006 ), The azimuthal evolution of the substorm expansive phase onset aurora, in Proceedings of ICS‐8, edited by M. Syrja¨suo and E. Donovan, pp. 55 – 60, Univ. of Calgary, Calgary, Alberta, Canada.en_US
dc.identifier.citedreferenceErickson, G. M., R. W. Spiro, and R. A. Wolf ( 1991 ), The physics of the Harang discontinuity, J. Geophys. Res., 96, 1633 – 1645, doi: 10.1029/90JA02344.en_US
dc.identifier.citedreferenceGarner, T. W., R. B. Harris, J. A. York, C. S. Herbster, C. F. Minter III, and D. L. Hampton ( 2011 ), An auroral scintillation observation using precise, collocated GPS receivers, Radio Sci., 46, RS1018, doi: 10.1029/2010RS004412.en_US
dc.identifier.citedreferenceGjerloev, J. W. ( 2009 ), A Global Ground‐Based Magnetometer Initiative, EOS, 90, 27, 230 – 231.en_US
dc.identifier.citedreferenceGkioulidou, M., C.‐P. Wang, L. R. Lyons, and R. A. Wolf ( 2009 ), Formation of the Harang reversal and its dependence on plasma sheet conditions: Rice convection model simulations, J. Geophys. Res., 114, A07204, doi: 10.1029/2008JA013955.en_US
dc.identifier.citedreferenceGkioulidou, M., C.‐P. Wang, and L. R. Lyons ( 2011 ), Effect of self‐consistent magnetic field on plasma sheet penetration to the inner magnetosphere: Rice convection model simulations combined with modified Dungey force‐balanced magnetic field solver, J. Geophys. Res., 116, A12213, doi: 10.1029/2011JA016810.en_US
dc.identifier.citedreferenceGómez, L., I. S. Juan, A. V. Z. María, M. Amalia, and B. Claudio ( 2007 ), Determination of a geomagnetic storm and substorm effects on the ionospheric variability from GPS observations at high latitudes, J. Atmos. Terr. Phys., 69, 8, 955 – 968, doi: 10.1016/j.jastp.2007.03.002.en_US
dc.identifier.citedreferenceGrebowsky, J. M., H. A. Taylor Jr., and J. M. Lindsay ( 1983 ), Location and source of ionospheric high latitude troughs, Planet. Space Sci., 31, 99 – 105, doi: 10.1016/0032‐0633(83)90034‐X.en_US
dc.identifier.citedreferenceHarang, L. ( 1946 ), The mean field of disturbance of polar geomagnetic storms, Terr. Magn. Atmos. Electr., 51 ( 3 ), 353 – 380, doi: 10.1029/TE051i003p00353.en_US
dc.identifier.citedreferenceHeinselman, C. J., and M. J. Nicolls ( 2008 ), A Bayesian approach to electric field and E‐region neutral wind estimation with the Poker Flat Advanced Modular Incoherent Scatter Radar, Radio Sci., 43, RS5013, doi: 10.1029/2007RS003805.en_US
dc.identifier.citedreferenceHeppner, J. P. ( 1972 ), The Harang discontinuity in auroral belt ionospheric currents, Geophys. Norv., 29, 105 – 120.en_US
dc.identifier.citedreferenceInhester, B., J. Untiedt, M. Segatz, and M. Kürschner ( 1992 ), Direct determination of the local ionospheric Hall conductance distribution from two‐dimensional electric and magnetic field data, J. Geophys. Res., 97, 4073.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.