Show simple item record

Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars

dc.contributor.authorCurry, S. M.en_US
dc.contributor.authorLiemohn, M.en_US
dc.contributor.authorFang, X.en_US
dc.contributor.authorBrain, D.en_US
dc.contributor.authorMa, Y.en_US
dc.date.accessioned2013-08-02T20:51:21Z
dc.date.available2014-08-01T19:11:40Zen_US
dc.date.issued2013-06en_US
dc.identifier.citationCurry, S. M.; Liemohn, M.; Fang, X.; Brain, D.; Ma, Y. (2013). "Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars." Journal of Geophysical Research: Space Physics 118(6): 3700-3711. <http://hdl.handle.net/2027.42/99008>en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99008
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCoronaen_US
dc.subject.otherSolar Cycleen_US
dc.subject.otherMarsen_US
dc.subject.otherPick‐Up Ionsen_US
dc.subject.otherTest Particleen_US
dc.subject.otherNonthermal Escapeen_US
dc.titleSimulated kinetic effects of the corona and solar cycle on high altitude ion transport at Marsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99008/1/jgra50358.pdf
dc.identifier.doi10.1002/jgra.50358en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceBrain, D., et al. ( 2012 ), Comparison of global models for the escape of martian atmospheric plasma, Abstract P13C‐1969 presented at 2012 Fall Meeting, San Francisco, Calif., 3–7 Dec. 2012, http://fallmeeting.agu.org/2012/eposters/ eposter/p13c‐1969/.en_US
dc.identifier.citedreferenceHarnett, E. M., and R. M. Winglee ( 2006 ), Three‐dimensional multifluid simulations of ionospheric loss at mars from nominal solar wind conditions to magnetic cloud events, J. Geophys. Res., 111, A09213, doi: 10.1029/2006ja011724.en_US
dc.identifier.citedreferenceJakosky, B. M., and R. J. Phillips ( 2002 ), Mars volatile and climate history, Nature, 412, 237 – 244.en_US
dc.identifier.citedreferenceJin, H., K. Maezawa, and T. Mukai ( 2006 ), Effects of charge exchange and electron impact ionization on the formation of the magnetic pileup boundary at Mars, J. Geophys. Res., 111, A05306, doi: 10.1029/2005ja011127.en_US
dc.identifier.citedreferenceKallio, E., and R. Jarvinen ( 2012 ), Kinetic effects on ion escape at Mars and Venus: Hybrid modeling studies, Earth Planets Space, 64 ( 2 ), 157 – 163, doi: 10.5047/eps.2011.08.014.en_US
dc.identifier.citedreferenceKallio, E., K. Liu, R. Jarvinen, V. Pohjola, and P. Janhunen ( 2010 ), Oxygen ion escape at Mars in a hybrid model: High energy and low energy ions, Icarus, 206 ( 1 ), 152 – 163, doi: 10.1016/j.icarus.2009.05.015.en_US
dc.identifier.citedreferenceKallio, E., J.‐Y. Chaufray, R. Modolo, D. Snowden, and R. Winglee ( 2011 ), Modeling of Venus, Mars, and Titan, Space Sci. Rev., 162 ( 1– 4 ), 267 – 307, doi: 10.1007/s11214‐011‐9814‐8.en_US
dc.identifier.citedreferenceLiu, Y., A. Nagy, C. Groth, D. De Zeeuw, T. Gombosi, and K. Powell ( 1999 ), 3D multifluid MHD studies of the solar wind interaction with Mars, Geophys. Res. Lett., 26 ( 17 ), 2689 – 2692.en_US
dc.identifier.citedreferenceLuhmann, J. G., and J. U. Kozyra ( 1991 ), Dayside pickup oxygen ion precipitation at Venus and Mars spatial distributions energy deposition and consequences, J. Geophys. Res., 96, 5457 – 5467.en_US
dc.identifier.citedreferenceLundin, R., H. Lammer, and I. Ribas ( 2007 ), Planetary magnetic fields and solar forcing: Implications for atmospheric evolution, Space Sci. Rev., 129 ( 1–3 ), 245 – 278, doi: 10.1007/s11214‐007‐9176‐4.en_US
dc.identifier.citedreferenceLundin, R., S. Barabash, E. Dubinin, D. Winningham, and M. Yamauchi ( 2011a ), Low‐altitude acceleration of ionospheric ions at Mars, Geophys. Res. Lett., 38, L08108, doi: 10.1029/2011GL047064.en_US
dc.identifier.citedreferenceLundin, R., S. Barabash, M. Yamauchi, H. Nilsson, and D. Brain ( 2011b ), On the relation between plasma escape and the martian crustal magnetic field, Geophys. Res. Lett., 38, L02102, doi: 10.1029/2010GL046019.en_US
dc.identifier.citedreferenceMa, Y., A. Nagy, I. V. Sokolov, and K. C. Hansen ( 2004 ), Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109, A07211, doi: 10.1029/2003JA010367.en_US
dc.identifier.citedreferenceModolo, R., G. Chanteur, E. Dubinin, and A. Matthews ( 2005 ), Influence of the solar EUV flux on the martian plasma environment, Ann. Geophys., 23, 433 – 444.en_US
dc.identifier.citedreferenceModolo, R., G. Chanteur, E. Dubinin, and A. Matthews ( 2006 ), Simulated solar wind plasma interaction with the martian exosphere: Influence of the solar EUV flux on the bow shock and the magnetic pile‐up boundary, Ann. Geophys., 24, 3403 – 3410.en_US
dc.identifier.citedreferenceNagy, A., et al. ( 2004 ), The plasma environment of Mars, Space Sci. Rev., 111, 33 – 114.en_US
dc.identifier.citedreferenceNajib, D., A. F. Nagy, G. Tth, and Y. Ma ( 2011 ), Three‐dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars, J. Geophys. Res., 116, A05204, doi: 10.1029/2010JA016272.en_US
dc.identifier.citedreferenceShinagawa, H., and S. W. Bougher ( 1999 ), A two‐dimensional MHD model of the solar wind interaction with Mars, Earth Planets Space, 51, 55 – 60.en_US
dc.identifier.citedreferenceTerada, N., Y. N. Kulikov, H. Lammer, H. I. Lichtenegger, T. Tanaka, H. Shinagawa, and T. Zhang ( 2009 ), Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions, Astrobiology, 9 ( 1 ), 55 – 70, doi: 10.1089/ast.2008.0250.en_US
dc.identifier.citedreferenceTrotignon, J. G., C. Mazelle, C. Bertucci, and M. H. Acua ( 2006 ), Martian shock and magnetic pile‐up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets, Planet. Space Sci., 54 ( 4 ), 357 – 369, doi: 10.1016/j.pss.2006.01.003.en_US
dc.identifier.citedreferenceValeille, A., M. R. Combi, S. W. Bougher, V. Tenishev, and A. F. Nagy ( 2009 ), Three‐dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history, J. Geophys. Res., 114, E11006, doi: 10.1029/2009JE003389.en_US
dc.identifier.citedreferenceValeille, A., M. Combi, V. Tenishev, S. W. Bougher, and A. Nagy ( 2010 ), A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions, Icarus, 206, 18 – 27, doi: 10.1016/j.icarus.2008.08.018.en_US
dc.identifier.citedreferenceVignes, D., et al. ( 2000 ), The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile‐up boundary from the observations of the mag/er experiment onboard mars global surveyor, Geophys. Res. Lett., 27 ( 1 ), 49 – 52, doi: 10.1029/1999GL010703.en_US
dc.identifier.citedreferenceAndersson, L., R. E. Ergun, and A. I. F. Stewart ( 2010 ), The combined atmospheric photochemistry and ion tracing code: Reproducing the viking lander results and initial outflow results, Icarus, 206 ( 1 ), 120 – 129, doi: 10.1016/j.icarus.2009.07.009.en_US
dc.identifier.citedreferenceBarabash, S., and M. Holmstrom ( 2002 ), Energetic neutral atoms at Mars 4. Imaging of planetary oxygen, J. Geophys. Res., 107 ( A10 ), 1280, doi: 10.1029/2001JA000326.en_US
dc.identifier.citedreferenceBauske, R., A. Nagy, T. Gombosi, D. De Zeeuw, K. Powell, and J. Luhmann ( 1998 ), A three‐dimensional MHD study of solar wind mass loading processes at Venus: Effects of photoionization, electron impact ionization, and charge exchange, J. Geophys. Res., 103 ( A10 ), 625 – 638.en_US
dc.identifier.citedreferenceBertucci, C., C. Mazelle, and M. Acuna ( 2005 ), Structure and variability of the martian magnetic pileup boundary and bow shock from MGS MAG/ER observations, Adv. Space Res., 36 ( 11 ), 2066 – 2076, doi: 10.1016/j.asr.2005.05.096.en_US
dc.identifier.citedreferenceBoesswetter, A., et al. ( 2007 ), Comparison of plasma data from ASPERA‐3/Mars‐Express with a 3‐D hybrid simulation, Ann. Geophys., 25, 1851 – 1864.en_US
dc.identifier.citedreferenceBougher, S. W., S. Engel, D. Hinson, and J. Murphy ( 2004 ), MGS radio science electron density profiles: Interannual variability and implications for the martian neutral atmosphere, J. Geophys. Res., 109, E03010, doi: 10.1029/2003JE002154.en_US
dc.identifier.citedreferenceBougher, S. W., P. Blelly, M. Combi, J. L. Fox, I. Mueller‐Wodarg, A. Ridley, and R. Roble ( 2008 ), Neutral upper atmosphere and ionosphere modeling, Space Sci. Rev., 139, 107 – 141.en_US
dc.identifier.citedreferenceBrain, D., et al. ( 2010 ), A comparison of global models for the solar wind interaction with Mars, Icarus, 206 ( 1 ), 139 – 151, doi: 10.1016/j.icarus.2009.06.030.en_US
dc.identifier.citedreferenceBrecht, S. H., and S. A. Ledvina ( 2010 ), The loss of water from Mars: Numerical results and challenges, Icarus, 206 ( 1 ), 164 – 173, doi: 10.1016/j.icarus.2009.04.028.en_US
dc.identifier.citedreferenceChaufray, J. Y., R. Modolo, F. Leblanc, G. Chanteur, R. E. Johnson, and J. G. Luhmann ( 2007 ), Mars solar wind interaction: Formation of the martian corona and atmospheric loss to space, J. Geophys. Res., 112, E09009, doi: 10.1029/2007JE002915.en_US
dc.identifier.citedreferenceCipriani, F., F. Leblanc, and J. J. Berthelier ( 2007 ), Martian corona: Nonthermal sources of hot heavy species, J. Geophys. Res., 112, E07001, doi: 10.1029/2006JE002818.en_US
dc.identifier.citedreferenceCravens, T. E., J. U. Kozyra, A. Nagy, T. Gombosi, and M. Kurtz ( 1987 ), Electron impact ionization in the vicinity of comets, J. Geophys. Res., 92, 7341 – 7353.en_US
dc.identifier.citedreferenceCurry, S. M., M. W. Liemohn, X. Fang, Y. J. Ma, and J. R. Espley ( 2013 ), The influence of production mechanisms on pick‐up ion loss at Mars, J. Geophys. Res., 118, 554 – 569, doi: 10.1029/2012ja017665.en_US
dc.identifier.citedreferenceDubinin, E., M. Fraenz, J. Woch, E. Roussos, S. Barabash, R. Lundin, J. D. Winningham, R. A. Frahm, and M. Acuna ( 2006 ), Plasma morphology at Mars. Aspera‐3 observations, Space Sci. Rev., 126 ( 1– 4 ), 209 – 238, doi: 10.1007/s11214‐006‐9039‐4.en_US
dc.identifier.citedreferenceDubinin, E., M. Fraenz, A. Fedorov, R. Lundin, N. Edberg, F. Duru, and O. Vaisberg ( 2011 ), Ion energization and escape on Mars and Venus, Space Sci. Rev., 162 ( 1– 4 ), 173 – 211, doi: 10.1007/s11214‐011‐9831‐7.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, A. F. Nagy, Y. Ma, D. L. De Zeeuw, J. U. Kozyra, and T. H. Zurbuchen ( 2008 ), Pickup oxygen ion velocity space and spatial distribution around Mars, J. Geophys. Res., 113, A02210, doi: 10.1029/2007JA012736.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, A. F. Nagy, J. G. Luhmann, and Y. Ma ( 2010 ), On the effect of the martian crustal magnetic field on atmospheric erosion, Icarus, 206 ( 1 ), 130 – 138, doi: 10.1016/j.icarus.2009.01.012.en_US
dc.identifier.citedreferenceFox, J. L. ( 2009 ), Morphology of the dayside ionosphere of mars: Implications for ion outflows, J. Geophys. Res., 114, E12005, doi: 10.1029/2009je003432.en_US
dc.identifier.citedreferenceFox, J. L., and A. Hac ( 1997 ), Spectrum of hot O at the exobases of the terrestrial planets, J. Geophys. Res., 102 ( A11 ), 24,005 – 24,011, doi: 10.1029/97JA02089.en_US
dc.identifier.citedreferenceFraenz, M., et al. ( 2006 ), Plasma intrusion above Mars crustal fields: Mars Express ASPERA‐3 observations, Icarus, 182 ( 2 ), 406 – 412, doi: 10.1016/j.icarus.2005.11.016.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.