Adenylyl cyclase 6 mediates the action of cyclic AMP‐dependent secretagogues in mouse pancreatic exocrine cells via protein kinase A pathway activation
dc.contributor.author | Sabbatini, Maria E. | en_US |
dc.contributor.author | D’alecy, Louis | en_US |
dc.contributor.author | Lentz, Stephen I. | en_US |
dc.contributor.author | Tang, Tong | en_US |
dc.contributor.author | Williams, John A. | en_US |
dc.date.accessioned | 2013-08-02T20:51:21Z | |
dc.date.available | 2014-10-06T19:17:44Z | en_US |
dc.date.issued | 2013-08-01 | en_US |
dc.identifier.citation | Sabbatini, Maria E.; D’alecy, Louis ; Lentz, Stephen I.; Tang, Tong; Williams, John A. (2013). "Adenylyl cyclase 6 mediates the action of cyclic AMPâ dependent secretagogues in mouse pancreatic exocrine cells via protein kinase A pathway activation." The Journal of Physiology 591(15). <http://hdl.handle.net/2027.42/99009> | en_US |
dc.identifier.issn | 0022-3751 | en_US |
dc.identifier.issn | 1469-7793 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/99009 | |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.title | Adenylyl cyclase 6 mediates the action of cyclic AMP‐dependent secretagogues in mouse pancreatic exocrine cells via protein kinase A pathway activation | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Physiology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA | en_US |
dc.contributor.affiliationum | Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA | en_US |
dc.contributor.affiliationother | Department of Medicine, University of California and VA San Diego Healthcare System, San Diego, CA, USA | en_US |
dc.identifier.pmid | 23753526 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/99009/1/jphysiol.2012.249698.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/99009/2/TJP_5749_sm_TableS1-S2.pdf | |
dc.identifier.doi | 10.1113/jphysiol.2012.249698 | en_US |
dc.identifier.source | The Journal of Physiology | en_US |
dc.identifier.citedreference | Cumbay MG & Watts VJ ( 2004 ). Novel regulatory properties of human type 9 adenylate cyclase. J Pharmacol Exp Ther 310, 108 – 115. | en_US |
dc.identifier.citedreference | Jiang LI, Collins J, Davis R, Fraser ID & Sternweis PC ( 2008 ). Regulation of cAMP responses by the G12/13 pathway converges on adenylyl cyclase VII. J Biol Chem 283, 23429 – 23439. | en_US |
dc.identifier.citedreference | Kolodecik TR, Shugrue CA, Thrower EC, Levin LR, Buck J & Gorelick FS ( 2012 ). Activation of soluble adenylyl cyclase protects against secretagogue stimulated zymogen activation in rat pancreaic acinar cells. PLoS One 7, e41320. | en_US |
dc.identifier.citedreference | Lee MG, Wigley WC, Zeng W, Noel LE, Marino CR, Thomas PJ & Muallem S ( 1999 ). Regulation of Cl − /HCO 3 − exchange by cystic fibrosis transmembrane conductance regulator expressed in NIH 373 and HEK 293 cells. J Biol Chem 274, 3414 – 3421. | en_US |
dc.identifier.citedreference | Matsushita K, Okabayashi Y, Hasegawa H, Koide M, Kido Y, Okutani T, Sugimoto Y & Kasuga M ( 1993 ). In vitro inhibitory effect of somatostatin on secretin action in exocrine pancreas of rats. Gastroenterology 104, 1146 – 1152. | en_US |
dc.identifier.citedreference | O'Sullivan AJ & Jamieson JD ( 1992 ). Protein kinase A modulates Ca 2+ ‐ and protein kinase C‐dependent amylase release in permeabilized rat pancreatic acini. Biochem J 287, 403 – 406. | en_US |
dc.identifier.citedreference | Ohnishi H, Mine T & Kojima I ( 1994 ). Inhibition by somatostatin of amylase secretion induced by calcium and cyclic AMP in rat pancreatic acini. Biochem J 304, 531 – 536. | en_US |
dc.identifier.citedreference | Premont RT, Matsuoka I, Mattei MG, Pouille Y, Defer N & Hanoune J ( 1996 ). Identification and characterization of a widely expressed form of adenylyl cyclase. J Biol Chem 271, 13900 – 13907. | en_US |
dc.identifier.citedreference | Sabbatini ME, Bi Y, Ji B, Ernst SA & Williams JA ( 2010 ). CCK activates RhoA and Rac1 differentially through Gα 13 and Gα q in mouse pancreatic acini. Am J Physiol Cell Physiol 298, C592 – 601. | en_US |
dc.identifier.citedreference | Sabbatini ME, Chen X, Ernst SA & Williams JA ( 2008 ). Rap1 activation plays a regulatory role in pancreatic amylase secretion. J Biol Chem 283, 23884 – 23894. | en_US |
dc.identifier.citedreference | Sabbatini ME, Villagra A, Davio CA, Vatta MS, Fernandez BE & Bianciotti LG ( 2003 ). Atrial natriuretic factor stimulates exocrine pancreatic secretion in the rat through NPR‐C receptors. Am J Physiol Gastrointest Liver Physiol 285, G929 – 937. | en_US |
dc.identifier.citedreference | Sadana R & Dessauer CW ( 2009 ). Physiological roles for G protein‐regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals 17, 5 – 22. | en_US |
dc.identifier.citedreference | Sans MD, Sabbatini ME, Ernst SA, D’Alecy LG, Nishijima I & Williams JA ( 2011 ). Secretin is not necessary for exocrine pancreatic development and growth in mice. Am J Physiol Gastrointest Liver Physiol 301, G791 – 798. | en_US |
dc.identifier.citedreference | Seino S & Shibasaki T ( 2005 ). PKA‐dependent and PKA‐independent pathways for cAMP‐regulated exocytosis. Physiol Rev 85, 1303 – 1342. | en_US |
dc.identifier.citedreference | Stryjek‐Kaminska D, Piiper A & Zeuzem S ( 1995 ). EGF inhibits secretagogue‐induced cAMP production and amylase secretion by Gi proteins in pancreatic acini. Am J Physiol 269, G676 – 682. | en_US |
dc.identifier.citedreference | Tang T, Gao MH, Lai NC, Firth AL, Takahashi T, Guo T, Yuan JX, Roth DM & Hammond HK ( 2008 ). Adenylyl cyclase type 6 deletion decreases left ventricular function via impaired calcium handling. Circulation 117, 61 – 69. | en_US |
dc.identifier.citedreference | Tashiro M, Samuelson LC, Liddle RA & Williams JA ( 2004 ). Calcineurin mediates pancreatic growth in protease inhibitor‐treated mice. Am J Physiol Gastrointest Liver Physiol 286, G784 – 790. | en_US |
dc.identifier.citedreference | Watson EL, Jacobson KL, Singh JC, Idzerda R, Ott SM, DiJulio DH, Wong ST & Storm DR ( 2000 ). The type 8 adenylyl cyclase is critical for Ca 2+ stimulation of cAMP accumulation in mouse parotid acini. J Biol Chem 275, 14691 – 14699. | en_US |
dc.identifier.citedreference | Willems PH, Tilly RH & de Pont JJ ( 1987 ). Pertussis toxin stimulates cholecystokinin‐induced cyclic AMP formation but is without effect on secretagogue‐induced calcium mobilization in exocrine pancreas. Biochim Biophys Acta 928, 179 – 185. | en_US |
dc.identifier.citedreference | Willoughby D & Cooper DM ( 2007 ). Organization and Ca 2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87, 965 – 1010. | en_US |
dc.identifier.citedreference | Williams JA & Yule DI ( 2012 ). Stimulus‐secretion coupling in pancreatic acinar cells. In Physiology of the Gastrointestinal Tract 5th edn, ed. Johnson LR, pp. 1361 – 1398. Elsevier, Amsterdam. | en_US |
dc.identifier.citedreference | Akiyama T, Hirohata Y, Okabayashi Y, Imoto I & Otsuki M ( 1998 ). Supramaximal CCK and CCh concentrations abolish VIP potentiation by inhibiting adenylyl cyclase activity. Am J Physiol 275, G1202 – 1208. | en_US |
dc.identifier.citedreference | Argent BE, Gray MA, Steward MC, Case RM ( 2012 ). Cell physiology of pancreatic ducts. In Physiology of the Gastrointestinal Tract 5th edn, ed. Johnson LR, pp. 1399 – 1423. Elsevier, Amsterdam. | en_US |
dc.identifier.citedreference | Buck J, Sinclair ML, Schapal L, Cann MJ & Levin LR ( 1999 ). Cytosolic adenylyl cyclase defines a unique signalling molecule in mammals. Proc Natl Acad Sci U S A, 96, 79 – 84. | en_US |
dc.identifier.citedreference | Burnham DB, McChesney DJ, Thurston KC & Williams JA ( 1984 ). Interaction of cholecystokinin and vasoacive intestinal polypeptide on function of mouse pancreatic acini in vitro. J Physiol 349, 475 – 482. | en_US |
dc.identifier.citedreference | Burnham DB & Williams JA ( 1984 ). Activation of protein kinase activity in pancreatic acini by calcium and cAMP. Am J Physiol 246, G500 – G508. | en_US |
dc.identifier.citedreference | Chaudhuri A, Husain SZ, Kolodecik TR, Grant WM & Gorelick FS ( 2007 ). Cyclic AMP‐dependent protein kinase and Epac mediate cyclic AMP responses in pancreatic acini. Am J Physiol Gastrointest Liver Physiol 292, G1403 – 1410. | en_US |
dc.identifier.citedreference | Chen Z, Singer WD, Wells CD, Sprang SR & Sternweis PC ( 2003 ). Mapping the Gα 13 binding interface of the rgRGS domain of p115RhoGEF. J Biol Chem 278, 9912 – 9919. | en_US |
dc.identifier.citedreference | Collen MJ, Sutliff VE, Pan GZ & Gardner JD ( 1982 ). Postreceptor modulation of action of VIP and secretin on pancreatic enzyme secretion by secretagogues that mobilize cellular calcium. Am J Physiol 242, G423 – G428. | en_US |
dc.identifier.citedreference | Cooper DM ( 2003 ). Regulation and organization of adenylyl cyclases and cAMP. Biochem J 375, 517 – 529. | en_US |
dc.identifier.citedreference | Cumbay MG & Watts VJ ( 2005 ). Gα q potentiation of adenylate cyclase type 9 activity through a Ca 2+ /calmodulin‐dependent pathway. Biochem Pharmacol 69, 1247 – 1256. | en_US |
dc.identifier.citedreference | Duan RD, Guo YJ & Williams JA ( 1994 ). Conversion to Ca 2+ ‐independent form of Ca 2+ /calmodulin protein kinase II in rat pancreatic acini. Biochem Biophys Res Commun 199, 368 – 373. | en_US |
dc.identifier.citedreference | Gardner JD, Sutliff VE, Walker MD & Jensen RT ( 1983 ). Effects of inhibitors of cyclic nucleotide phosphodiesterase on actions of cholecystokinin, bombesin, and carbachol on pancreatic acini. Am J Physiol 245, G676 – G680. | en_US |
dc.identifier.citedreference | Groblewski GE, Yoshida M, Bragado MJ, Ernst SA, Leykam J & Williams JA ( 1998 ). Purification and characterization of a novel physiological substrate for calcineurin in mammalian cells. J Biol Chem 273, 22738 – 22744. | en_US |
dc.identifier.citedreference | Gurda GT, Guo L, Lee SH, Molkentin JD & Williams JA ( 2008 ). Cholecystokinin activates pancreatic calcineurin‐NFAT signalling in vitro and in vivo. Mol Biol Cell 19, 198 – 206. | en_US |
dc.identifier.citedreference | Husain SZ, Grant WM, Gorelick FS, Nathanson MH & Shah AU ( 2007 ). Caerulein‐induced intracellular pancreatic zymogen activation is dependent on calcineurin. Am J Physiol Gastrointest Liver Physiol 292, G1594 – 1599. | en_US |
dc.identifier.citedreference | Ishiguro H, Steward MC, Lindsay AR & Case RM ( 1996 ). Accumulation of intracellular HCO 3 − by Na + ‐HCO 3 − cotransport in interlobular ducts from guinea‐pig pancreas. J Physiol 495, 169 – 178. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.