Show simple item record

Adenylyl cyclase 6 mediates the action of cyclic AMP‐dependent secretagogues in mouse pancreatic exocrine cells via protein kinase A pathway activation

dc.contributor.authorSabbatini, Maria E.en_US
dc.contributor.authorD’alecy, Louisen_US
dc.contributor.authorLentz, Stephen I.en_US
dc.contributor.authorTang, Tongen_US
dc.contributor.authorWilliams, John A.en_US
dc.date.accessioned2013-08-02T20:51:21Z
dc.date.available2014-10-06T19:17:44Zen_US
dc.date.issued2013-08-01en_US
dc.identifier.citationSabbatini, Maria E.; D’alecy, Louis ; Lentz, Stephen I.; Tang, Tong; Williams, John A. (2013). "Adenylyl cyclase 6 mediates the action of cyclic AMPâ dependent secretagogues in mouse pancreatic exocrine cells via protein kinase A pathway activation." The Journal of Physiology 591(15). <http://hdl.handle.net/2027.42/99009>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99009
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleAdenylyl cyclase 6 mediates the action of cyclic AMP‐dependent secretagogues in mouse pancreatic exocrine cells via protein kinase A pathway activationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Medicine, University of California and VA San Diego Healthcare System, San Diego, CA, USAen_US
dc.identifier.pmid23753526en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99009/1/jphysiol.2012.249698.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99009/2/TJP_5749_sm_TableS1-S2.pdf
dc.identifier.doi10.1113/jphysiol.2012.249698en_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceCumbay MG & Watts VJ ( 2004 ). Novel regulatory properties of human type 9 adenylate cyclase. J Pharmacol Exp Ther 310, 108 – 115.en_US
dc.identifier.citedreferenceJiang LI, Collins J, Davis R, Fraser ID & Sternweis PC ( 2008 ). Regulation of cAMP responses by the G12/13 pathway converges on adenylyl cyclase VII. J Biol Chem 283, 23429 – 23439.en_US
dc.identifier.citedreferenceKolodecik TR, Shugrue CA, Thrower EC, Levin LR, Buck J & Gorelick FS ( 2012 ). Activation of soluble adenylyl cyclase protects against secretagogue stimulated zymogen activation in rat pancreaic acinar cells. PLoS One 7, e41320.en_US
dc.identifier.citedreferenceLee MG, Wigley WC, Zeng W, Noel LE, Marino CR, Thomas PJ & Muallem S ( 1999 ). Regulation of Cl − /HCO 3 − exchange by cystic fibrosis transmembrane conductance regulator expressed in NIH 373 and HEK 293 cells. J Biol Chem 274, 3414 – 3421.en_US
dc.identifier.citedreferenceMatsushita K, Okabayashi Y, Hasegawa H, Koide M, Kido Y, Okutani T, Sugimoto Y & Kasuga M ( 1993 ). In vitro inhibitory effect of somatostatin on secretin action in exocrine pancreas of rats. Gastroenterology 104, 1146 – 1152.en_US
dc.identifier.citedreferenceO'Sullivan AJ & Jamieson JD ( 1992 ). Protein kinase A modulates Ca 2+ ‐ and protein kinase C‐dependent amylase release in permeabilized rat pancreatic acini. Biochem J 287, 403 – 406.en_US
dc.identifier.citedreferenceOhnishi H, Mine T & Kojima I ( 1994 ). Inhibition by somatostatin of amylase secretion induced by calcium and cyclic AMP in rat pancreatic acini. Biochem J 304, 531 – 536.en_US
dc.identifier.citedreferencePremont RT, Matsuoka I, Mattei MG, Pouille Y, Defer N & Hanoune J ( 1996 ). Identification and characterization of a widely expressed form of adenylyl cyclase. J Biol Chem 271, 13900 – 13907.en_US
dc.identifier.citedreferenceSabbatini ME, Bi Y, Ji B, Ernst SA & Williams JA ( 2010 ). CCK activates RhoA and Rac1 differentially through Gα 13 and Gα q in mouse pancreatic acini. Am J Physiol Cell Physiol 298, C592 – 601.en_US
dc.identifier.citedreferenceSabbatini ME, Chen X, Ernst SA & Williams JA ( 2008 ). Rap1 activation plays a regulatory role in pancreatic amylase secretion. J Biol Chem 283, 23884 – 23894.en_US
dc.identifier.citedreferenceSabbatini ME, Villagra A, Davio CA, Vatta MS, Fernandez BE & Bianciotti LG ( 2003 ). Atrial natriuretic factor stimulates exocrine pancreatic secretion in the rat through NPR‐C receptors. Am J Physiol Gastrointest Liver Physiol 285, G929 – 937.en_US
dc.identifier.citedreferenceSadana R & Dessauer CW ( 2009 ). Physiological roles for G protein‐regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals 17, 5 – 22.en_US
dc.identifier.citedreferenceSans MD, Sabbatini ME, Ernst SA, D’Alecy LG, Nishijima I & Williams JA ( 2011 ). Secretin is not necessary for exocrine pancreatic development and growth in mice. Am J Physiol Gastrointest Liver Physiol 301, G791 – 798.en_US
dc.identifier.citedreferenceSeino S & Shibasaki T ( 2005 ). PKA‐dependent and PKA‐independent pathways for cAMP‐regulated exocytosis. Physiol Rev 85, 1303 – 1342.en_US
dc.identifier.citedreferenceStryjek‐Kaminska D, Piiper A & Zeuzem S ( 1995 ). EGF inhibits secretagogue‐induced cAMP production and amylase secretion by Gi proteins in pancreatic acini. Am J Physiol 269, G676 – 682.en_US
dc.identifier.citedreferenceTang T, Gao MH, Lai NC, Firth AL, Takahashi T, Guo T, Yuan JX, Roth DM & Hammond HK ( 2008 ). Adenylyl cyclase type 6 deletion decreases left ventricular function via impaired calcium handling. Circulation 117, 61 – 69.en_US
dc.identifier.citedreferenceTashiro M, Samuelson LC, Liddle RA & Williams JA ( 2004 ). Calcineurin mediates pancreatic growth in protease inhibitor‐treated mice. Am J Physiol Gastrointest Liver Physiol 286, G784 – 790.en_US
dc.identifier.citedreferenceWatson EL, Jacobson KL, Singh JC, Idzerda R, Ott SM, DiJulio DH, Wong ST & Storm DR ( 2000 ). The type 8 adenylyl cyclase is critical for Ca 2+ stimulation of cAMP accumulation in mouse parotid acini. J Biol Chem 275, 14691 – 14699.en_US
dc.identifier.citedreferenceWillems PH, Tilly RH & de Pont JJ ( 1987 ). Pertussis toxin stimulates cholecystokinin‐induced cyclic AMP formation but is without effect on secretagogue‐induced calcium mobilization in exocrine pancreas. Biochim Biophys Acta 928, 179 – 185.en_US
dc.identifier.citedreferenceWilloughby D & Cooper DM ( 2007 ). Organization and Ca 2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87, 965 – 1010.en_US
dc.identifier.citedreferenceWilliams JA & Yule DI ( 2012 ). Stimulus‐secretion coupling in pancreatic acinar cells. In Physiology of the Gastrointestinal Tract 5th edn, ed. Johnson LR, pp. 1361 – 1398. Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceAkiyama T, Hirohata Y, Okabayashi Y, Imoto I & Otsuki M ( 1998 ). Supramaximal CCK and CCh concentrations abolish VIP potentiation by inhibiting adenylyl cyclase activity. Am J Physiol 275, G1202 – 1208.en_US
dc.identifier.citedreferenceArgent BE, Gray MA, Steward MC, Case RM ( 2012 ). Cell physiology of pancreatic ducts. In Physiology of the Gastrointestinal Tract 5th edn, ed. Johnson LR, pp. 1399 – 1423. Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceBuck J, Sinclair ML, Schapal L, Cann MJ & Levin LR ( 1999 ). Cytosolic adenylyl cyclase defines a unique signalling molecule in mammals. Proc Natl Acad Sci U S A, 96, 79 – 84.en_US
dc.identifier.citedreferenceBurnham DB, McChesney DJ, Thurston KC & Williams JA ( 1984 ). Interaction of cholecystokinin and vasoacive intestinal polypeptide on function of mouse pancreatic acini in vitro. J Physiol 349, 475 – 482.en_US
dc.identifier.citedreferenceBurnham DB & Williams JA ( 1984 ). Activation of protein kinase activity in pancreatic acini by calcium and cAMP. Am J Physiol 246, G500 – G508.en_US
dc.identifier.citedreferenceChaudhuri A, Husain SZ, Kolodecik TR, Grant WM & Gorelick FS ( 2007 ). Cyclic AMP‐dependent protein kinase and Epac mediate cyclic AMP responses in pancreatic acini. Am J Physiol Gastrointest Liver Physiol 292, G1403 – 1410.en_US
dc.identifier.citedreferenceChen Z, Singer WD, Wells CD, Sprang SR & Sternweis PC ( 2003 ). Mapping the Gα 13 binding interface of the rgRGS domain of p115RhoGEF. J Biol Chem 278, 9912 – 9919.en_US
dc.identifier.citedreferenceCollen MJ, Sutliff VE, Pan GZ & Gardner JD ( 1982 ). Postreceptor modulation of action of VIP and secretin on pancreatic enzyme secretion by secretagogues that mobilize cellular calcium. Am J Physiol 242, G423 – G428.en_US
dc.identifier.citedreferenceCooper DM ( 2003 ). Regulation and organization of adenylyl cyclases and cAMP. Biochem J 375, 517 – 529.en_US
dc.identifier.citedreferenceCumbay MG & Watts VJ ( 2005 ). Gα q potentiation of adenylate cyclase type 9 activity through a Ca 2+ /calmodulin‐dependent pathway. Biochem Pharmacol 69, 1247 – 1256.en_US
dc.identifier.citedreferenceDuan RD, Guo YJ & Williams JA ( 1994 ). Conversion to Ca 2+ ‐independent form of Ca 2+ /calmodulin protein kinase II in rat pancreatic acini. Biochem Biophys Res Commun 199, 368 – 373.en_US
dc.identifier.citedreferenceGardner JD, Sutliff VE, Walker MD & Jensen RT ( 1983 ). Effects of inhibitors of cyclic nucleotide phosphodiesterase on actions of cholecystokinin, bombesin, and carbachol on pancreatic acini. Am J Physiol 245, G676 – G680.en_US
dc.identifier.citedreferenceGroblewski GE, Yoshida M, Bragado MJ, Ernst SA, Leykam J & Williams JA ( 1998 ). Purification and characterization of a novel physiological substrate for calcineurin in mammalian cells. J Biol Chem 273, 22738 – 22744.en_US
dc.identifier.citedreferenceGurda GT, Guo L, Lee SH, Molkentin JD & Williams JA ( 2008 ). Cholecystokinin activates pancreatic calcineurin‐NFAT signalling in vitro and in vivo. Mol Biol Cell 19, 198 – 206.en_US
dc.identifier.citedreferenceHusain SZ, Grant WM, Gorelick FS, Nathanson MH & Shah AU ( 2007 ). Caerulein‐induced intracellular pancreatic zymogen activation is dependent on calcineurin. Am J Physiol Gastrointest Liver Physiol 292, G1594 – 1599.en_US
dc.identifier.citedreferenceIshiguro H, Steward MC, Lindsay AR & Case RM ( 1996 ). Accumulation of intracellular HCO 3 − by Na + ‐HCO 3 − cotransport in interlobular ducts from guinea‐pig pancreas. J Physiol 495, 169 – 178.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.