Show simple item record

A tutorial on propensity score estimation for multiple treatments using generalized boosted models

dc.contributor.authorMcCaffrey, Daniel F.en_US
dc.contributor.authorGriffin, Beth Annen_US
dc.contributor.authorAlmirall, Danielen_US
dc.contributor.authorSlaughter, Mary Ellenen_US
dc.contributor.authorRamchand, Rajeeven_US
dc.contributor.authorBurgette, Lane F.en_US
dc.date.accessioned2013-08-02T20:51:33Z
dc.date.available2014-10-06T19:17:44Zen_US
dc.date.issued2013-08-30en_US
dc.identifier.citationMcCaffrey, Daniel F.; Griffin, Beth Ann; Almirall, Daniel; Slaughter, Mary Ellen; Ramchand, Rajeev; Burgette, Lane F. (2013). "A tutorial on propensity score estimation for multiple treatments using generalized boosted models." Statistics in Medicine 32(19): 3388-3414. <http://hdl.handle.net/2027.42/99037>en_US
dc.identifier.issn0277-6715en_US
dc.identifier.issn1097-0258en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99037
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherSpringer‐Verlag Incen_US
dc.subject.otherCausal Effectsen_US
dc.subject.otherTwangen_US
dc.subject.otherInverse Probability of Treatment Weightingen_US
dc.subject.otherGBMen_US
dc.subject.otherCausal Modelingen_US
dc.titleA tutorial on propensity score estimation for multiple treatments using generalized boosted modelsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbsecondlevelStatistics and Numeric Dataen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23508673en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99037/1/sim_5753_Supplemental_Appendix_R2_12-26-2012.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99037/2/sim5753.pdf
dc.identifier.doi10.1002/sim.5753en_US
dc.identifier.sourceStatistics in Medicineen_US
dc.identifier.citedreferenceCochran WG. The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics 1968; 24: 295 – 313.en_US
dc.identifier.citedreferenceRidgeway G. The state of boosting. Computing Science and Statistics 1999; 31: 172 – 181.en_US
dc.identifier.citedreferenceFriedman J. Greedy function approximation: a gradient boosting machine. Annals of Statistics 2001; 29 ( 5 ): 1189 – 1232.en_US
dc.identifier.citedreferenceFriedman J. Stochastic gradient boosting. Computational Statistics and Data Analysis 2002; 38 ( 4 ): 367 – 378.en_US
dc.identifier.citedreferenceRidgeway G. GBM 1.6‐3.1 package manual, November 2011. (Available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.151.4024 ) [Accessed on: February 18, 2013].en_US
dc.identifier.citedreferenceRubin DB. Estimating causal effects of treatment in randomized and nonrandomized studies. Journal of Education Psychology 1974; 66: 688 – 701.en_US
dc.identifier.citedreferenceHolland P. Statistics and causal inference. Journal of the American Statistical Association 1986; 81: 945 – 960.en_US
dc.identifier.citedreferenceWooldridge J. Econometric of Analysis of Cross Section and Panel Data. MIT Press: Cambridge, MA, 2002.en_US
dc.identifier.citedreferenceCole SR, Frangakis CE. The consistency statement: a definition or an assumption? Epidemiology 2009; 20 ( 1 ): 3 – 5.en_US
dc.identifier.citedreferenceRosenbaum P, Rubin D. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70: 41 – 55.en_US
dc.identifier.citedreferenceMeyer JA, Rassen JA, Gagne JJ, Huybrechts KF, Schneeweiss S, Rothman KJ, Joffe MM, Glynn RJ. Effects of adjusting for instrumental variables on bias and precision of effect estimates. American Journal of Epidemiology 2011; 174 ( 11 ): 1213 – 1222.en_US
dc.identifier.citedreferenceKang JDY, Schafer JL. Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science 2007; 22 ( 4 ): 523 – 539.en_US
dc.identifier.citedreferenceFeng P, Zhou XH, Zou QM, Fan MY, Li XS. Generalized propensity score for estimating the average treatment effect of multiple treatments. Statistics in Medicine 2012; 31 ( 7 ): 681 – 697.en_US
dc.identifier.citedreferenceHuang IC, Frangakis C, Dominici F, Diette GB, Wu AW. Application of a propensity score approach for risk adjustment in profiling multiple physician groups on asthma care. Health Services Research 2005; 40 ( 1 ): 253 – 278.en_US
dc.identifier.citedreferenceWestreich D, Lessler J, Jonsson Funk M. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta‐classifiers as alternatives to logistic regression. Journal of Clinical Epidemiology 2010; 63 ( 8 ): 826 – 833.en_US
dc.identifier.citedreferenceBreiman L, Friedman J, Olshen R, Stone C. Classification and Regression Trees. Chapman & Hall/CRC: Boca Raton, FL, 1984.en_US
dc.identifier.citedreferenceCohen J. Statistical Power Analysis for the Behavioral Sciences, 2 edn., Lawrence Erlbaum: New Jersey, 1988.en_US
dc.identifier.citedreferenceImai K, King G, Stuart EA. Misunderstandings between experimentalists and observationalists about causal inference. Journal of the Royal Statistical Society, Series A 2008; 171: 481 – 502.en_US
dc.identifier.citedreferenceNeugebauer R, van der Laan M. Why prefer double robust estimators in causal inference? Journal of Statistical Planning and Inference 2005; 129: 405 – 426.en_US
dc.identifier.citedreferenceLittle RJ, Vartivarian S. Does weighting for nonresponse increase the variance of survey means? Technical Report, Mathematica Policy Research, 2005. (Available at http://www.mathematica‐mpr.com/publications/pdfs/weightingnonresponse.pdf ) [Accessed on: February 18, 2013].en_US
dc.identifier.citedreferenceDennis ML, Dawud‐Noursi S, Muck RD, McDermeit (Ives) M. The need for developing and evaluating adolescent treatment models. In Adolescent Substance Abuse Treatment in the United States: Exemplary Models from A National Evaluation Study. Hawthorn Press: New York, 2003.en_US
dc.identifier.citedreferenceStevens S, Morral AR (eds). Adolescent Substance Abuse Treatment in the United States: Exemplary Models from A National Evaluation Study. Hawthorn Press: New York, 2003.en_US
dc.identifier.citedreferenceHunter S, Ramchand R, Griffin BA, Suttorp MJ, McCaffrey DF, Morral AR. The effectiveness of community‐based delivery of an evidence‐based treatment for adolescent substance use. Journal of Substance Abuse Treatment 2012; 43 ( 2 ): 211 – 220.en_US
dc.identifier.citedreferenceRiley KJ, Rieckmann T, McCarty D. Implementation of MET/CBT5 for adolescents. The Journal of Behavioral Health Services and Research 2008; 35 ( 3 ): 304 – 314.en_US
dc.identifier.citedreferenceDennis M, Godley SH, Diamond G, Tims FM, Babor T, Donaldson J, Liddle H, Titus JC, Kaminer Y, Webb C, Hamilton N, Funk R. The Cannabis Youth Treatment (CYT) study: main findings from two randomized trials. Journal of Substance Abuse Treatment 2004; 27 ( 3 ): 197 – 213.en_US
dc.identifier.citedreferenceDennis M, Ives ML, White MK, Muck RD. The Strengthening Communities for Youth (SCY) initiative: a cluster analysis of the services received, their correlates and how they are associated with outcomes. Journal of Psychoactive Drugs 2008; 40 ( 1 ): 3 – 16.en_US
dc.identifier.citedreferenceDennis ML. Global appraisal of individual needs (GAIN) administration guide for the GAIN and related measures (version 1299). Technical Report, Chestnut Health Systems, Bloomington, IL, 1999.en_US
dc.identifier.citedreferenceGraubard B, Korn E. Predictive margins with survey data. Biometrics 1999; 55 ( 2 ): 652 – 659.en_US
dc.identifier.citedreferenceStuart EA. Matching methods for causal inference: a review and a look forward. Statistical Science 2010; 25 ( 1 ): 1 – 21.en_US
dc.identifier.citedreferenceRosenbaum PR. Observational Studies. Springer‐Verlag Inc: New York, 2002.en_US
dc.identifier.citedreferenceRosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association 1984; 79: 516 – 524.en_US
dc.identifier.citedreferenceDehejia RH, Wahba S. Causal effects in nonexperimental studies: reevaluating the evaluation of training programs. Journal of the American Statistical Association 1999; 94: 1053 – 1062.en_US
dc.identifier.citedreferenceMcCaffrey D, Ridgeway G, Morral A. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods December 2004; 9 ( 4 ): 403 – 425.en_US
dc.identifier.citedreferenceHirano K, Imbens GW. Estimation of causal effects using propensity score weighting: an application to data on right heart catheterization. Health Services & Outcomes Research Methodology 2001; 2 ( 3‐4 ): 259 – 278.en_US
dc.identifier.citedreferenceHo DE, Imai K, King G, Stuart EA. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Analysis 2007; 15: 199 – 236.en_US
dc.identifier.citedreferenceRubin DB. Using propensity scores to help design observational studies: application to tobacco litigation. Health Services & Outcomes Research Methodology 2001; 2: 169 – 188.en_US
dc.identifier.citedreferenceImbens GW. The role of the propensity score in estimating dose‐response functions. Biometrika 2000; 87 ( 3 ): 706 – 710.en_US
dc.identifier.citedreferenceImai K, van Dyk DA. Causal inference with general treatment regimes: generalizing the propensity score. Journal of the American Statistical Association 2004; 99 ( 467 ): 854 – 866.en_US
dc.identifier.citedreferenceFrölich M. Programme evaluations with multiple treatments. Journal of Economic Surveys 2004; 18 ( 2 ): 181 – 224.en_US
dc.identifier.citedreferenceRobins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology 2000; 11: 550 – 560.en_US
dc.identifier.citedreferenceLechner M. Identification and estimation of causal effects of multiple treatments under the conditional independence assumption. In Econometric Evaluation of Labour Market Policies. Physica‐Verlag: Heidelberg, 2001; 1 – 8.en_US
dc.identifier.citedreferenceZanutto E, Lu B, Hornik R. Using propensity score subclassification for multiple treatment doses to evaluate a national antidrug media campaign. Journal of Educational and Behavioral Statistics 2005; 30 ( 1 ): 59 – 73.en_US
dc.identifier.citedreferenceSpreeuwenberg MD, Bartak A, Croon MA, Hagenaars JA, Busschbach JJ, Andrea H, Twisk J, Stijnen T. The multiple propensity score as control for bias in the comparison of more than two treatment arms: an introduction from a case study in mental health. Medical Care 2010; 48 ( 2 ): 166 – 174.en_US
dc.identifier.citedreferenceFoster M. Propensity score matching: an illustrative analysis of dose response. Medical Care 2003; 41 ( 10 ): 1183 – 1192.en_US
dc.identifier.citedreferenceHarder VS, Stuart EA, Anthony J. Propensity score techniques and the assessment of measured covariate balance to test causal association in psychological research. Psychological Methods 2010; 15 ( 3 ): 234 – 249.en_US
dc.identifier.citedreferenceLee BK, Lessler J, Stuart E. Improving propensity score weighting using machine learning. Statistics in Medicine 2010; 29 ( 3 ): 337 – 346.en_US
dc.identifier.citedreferenceLee BK, Lessler J, Stuart E. Weight trimming and propensity score weighting. PLoS ONE 2011; 6 ( 3 ): e18174.en_US
dc.identifier.citedreferenceRamchand R, Griffin BA, Harris KM, Morral AR. Using a cross‐study design to assess the efficacy of MET/CBT‐5 in treating adolescents with cannabis‐related disorders. Journal of Studies on Alcohol and Drugs 2011; 72 ( 3 ): 380 – 389.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.