Show simple item record

Premature Cell Senescence and T Cell Receptor‐Independent Activation of CD8+ T Cells in Juvenile Idiopathic Arthritis

dc.contributor.authorDvergsten, Jeffrey A.en_US
dc.contributor.authorMueller, Robert G.en_US
dc.contributor.authorGriffin, Patriciaen_US
dc.contributor.authorAbedin, Sameemen_US
dc.contributor.authorPishko, Allysonen_US
dc.contributor.authorMichel, Joshua J.en_US
dc.contributor.authorRosenkranz, Margalit E.en_US
dc.contributor.authorReed, Ann M.en_US
dc.contributor.authorKietz, Daniel A.en_US
dc.contributor.authorVallejo, Abbe N.en_US
dc.date.accessioned2013-08-02T20:51:35Z
dc.date.available2014-10-06T19:17:44Zen_US
dc.date.issued2013-08en_US
dc.identifier.citationDvergsten, Jeffrey A.; Mueller, Robert G.; Griffin, Patricia; Abedin, Sameem; Pishko, Allyson; Michel, Joshua J.; Rosenkranz, Margalit E.; Reed, Ann M.; Kietz, Daniel A.; Vallejo, Abbe N. (2013). "Premature Cell Senescence and T Cell Receptor‐Independent Activation of CD8+ T Cells in Juvenile Idiopathic Arthritis." Arthritis & Rheumatism 65(8): 2201-2210. <http://hdl.handle.net/2027.42/99044>en_US
dc.identifier.issn0004-3591en_US
dc.identifier.issn1529-0131en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99044
dc.publisherWiley Periodicals, Inc.en_US
dc.titlePremature Cell Senescence and T Cell Receptor‐Independent Activation of CD8+ T Cells in Juvenile Idiopathic Arthritisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeriatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23686519en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99044/1/art38015.pdf
dc.identifier.doi10.1002/art.38015en_US
dc.identifier.sourceArthritis & Rheumatismen_US
dc.identifier.citedreferenceSchirmer M, Goldberger C, Wurzner R, Duftner C, Pfeiffer KP, Clausen J, et al. Circulating cytotoxic CD8 + CD28 – T cells in ankylosing spondylitis. Arthritis Res 2002; 4: 71 – 6.en_US
dc.identifier.citedreferenceKhan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 2002; 169: 1984 – 92.en_US
dc.identifier.citedreferenceWeitz M, Kiessling C, Friedrich M, Prosch S, Hoflich C, Kern F, et al. Persistent CMV infection correlates with disease activity and dominates the phenotype of peripheral CD8+ T cells in psoriasis. Exp Dermatol 2011; 20: 561 – 7.en_US
dc.identifier.citedreferenceBate SL, Dollard SC, Cannon MJ. Cytomegalovirus seroprevalence in the United States: the National Health and Nutrition Examination Surveys, 1988‐2004. Clin Infect Dis 2010; 50: 1439 – 47.en_US
dc.identifier.citedreferencePrelog M, Schwarzenbrunner N, Sailer‐Hoeck M, Kern H, Koppelstaetter C, Wurzner R, et al. Indications for a disturbed peripheral T‐cell homeostasis in juvenile idiopathic arthritis (JIA): absent expansion of CD28 T‐cells and no decrease of naive T‐cells in cytomegalovirus‐positive patients with JIA. J Rheumatol 2008; 35: 520 – 7.en_US
dc.identifier.citedreferenceMichel JJ, Turesson C, Lemster B, Atkins SR, Iclozan C, Bongartz T, et al. CD56‐expressing T cells that have features of senescence are expanded in rheumatoid arthritis. Arthritis Rheum 2007; 56: 43 – 57.en_US
dc.identifier.citedreferenceKimmig S, Przybylski GK, Schmidt CA, Laurisch K, Mowes B, Radbruch A, et al. Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J Exp Med 2002; 195: 789 – 94.en_US
dc.identifier.citedreferenceOvigne JM, Baker BS, Brown DW, Powles AV, Fry L. Epidermal CD8 + T cells in chronic plaque psoriasis are Tc1 cells producing heterogeneous levels of interferon‐γ. Exp Dermatol 2001; 10: 168 – 74.en_US
dc.identifier.citedreferenceChappert P, Schwartz RH. Induction of T cell anergy: integration of environmental cues and infectious tolerance. Curr Opin Immunol 2010; 22: 552 – 9.en_US
dc.identifier.citedreferencePrelog M, Schwarzenbrunner N, Sailer‐Hock M, Kern H, Klein‐Franke A, Ausserlechner MJ, et al. Premature aging of the immune system in children with juvenile idiopathic arthritis. Arthritis Rheum 2008; 58: 2153 – 62.en_US
dc.identifier.citedreferenceWeng NP. Telomeres and immune competency. Curr Opin Immunol 2012; 24: 470 – 5.en_US
dc.identifier.citedreferencePatil CK, Mian IS, Campisi J. The thorny path linking cellular senescence to organismal aging. Mech Ageing Dev 2005; 126: 1040 – 5.en_US
dc.identifier.citedreferenceOdum N, Morling N, Platz P, Hofmann B, Ryder LP, Heilmann C, et al. Increased prevalence of late stage T cell activation antigen (VLA‐1) in active juvenile chronic arthritis. Ann Rheum Dis 1987; 46: 846 – 52.en_US
dc.identifier.citedreferenceJankovic D, Kugler DG, Sher A. IL‐10 production by CD4+ effector T cells: a mechanism for self‐regulation. Mucosal Immunol 2010; 3: 239 – 46.en_US
dc.identifier.citedreferenceDijke IE, Weimar W, Baan CC. The control of anti‐donor immune responses by regulatory T cells in organ transplant patients. Transplant Proc 2008; 40: 1249 – 52.en_US
dc.identifier.citedreferenceDavila E, Kang YM, Park YW, Sawai H, He X, Pryshchep S, et al. Cell‐based immunotherapy with suppressor CD8+ T cells in rheumatoid arthritis. J Immunol 2005; 174: 7292 – 301.en_US
dc.identifier.citedreferenceRowe JH, Ertelt JM, Way SS. Foxp3 + regulatory T cells, immune stimulation and host defence against infection. Immunology 2012; 136: 1 – 10.en_US
dc.identifier.citedreferenceBarnes MG, Grom AA, Thompson SD, Griffin TA, Pavlidis P, Itert L, et al. Subtype‐specific peripheral blood gene expression profiles in recent‐onset juvenile idiopathic arthritis. Arthritis Rheum 2009; 60: 2102 – 12.en_US
dc.identifier.citedreferenceShahin AA, Shaker OG, Kamal N, Hafez HA, Gaber W, Shahin HA. Circulating interleukin‐6, soluble interleukin‐2 receptors, tumor necrosis factor α, and interleukin‐10 levels in juvenile chronic arthritis: correlations with soft tissue vascularity assessed by power Doppler sonography. Rheumatol Int 2002; 22: 84 – 8.en_US
dc.identifier.citedreferenceCrawley E, Kay R, Sillibourne J, Patel P, Hutchinson I, Woo P. Polymorphic haplotypes of the interleukin‐10 5' flanking region determine variable interleukin‐10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. Arthritis Rheum 1999; 42: 1101 – 8.en_US
dc.identifier.citedreferenceVallejo AN. Immune remodeling: lessons from repertoire alterations during chronological aging and in immune‐mediated disease. Trends Mol Med 2007; 13: 94 – 102.en_US
dc.identifier.citedreferenceMeresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, et al. Coordinated induction by IL15 of a TCR‐independent NKG2D signaling pathway converts CTL into lymphokine‐activated killer cells in celiac disease. Immunity 2004; 21: 357 – 66.en_US
dc.identifier.citedreferenceMeyer‐Olson D, Simons BC, Conrad JA, Smith RM, Barnett L, Lorey SL, et al. Clonal expansion and TCR‐independent differentiation shape the HIV‐specific CD8+ effector‐memory T‐cell repertoire in vivo. Blood 2010; 116: 396 – 405.en_US
dc.identifier.citedreferenceMacaubas C, Nguyen K, Milojevic D, Park JL, Mellins ED. Oligoarticular and polyarticular JIA: epidemiology and pathogenesis. Nat Rev Rheumatol 2009; 5: 616 – 26.en_US
dc.identifier.citedreferenceGrom AA, Hirsch R. T‐cell and T‐cell receptor abnormalities in the immunopathogenesis of juvenile rheumatoid arthritis. Curr Opin Rheumatol 2000; 12: 420 – 4.en_US
dc.identifier.citedreferenceHashkes PJ, Uziel Y, Laxer RM. The safety profile of biologic therapies for juvenile idiopathic arthritis. Nat Rev Rheumatol 2010; 6: 561 – 71.en_US
dc.identifier.citedreferenceHaufe S, Haug M, Schepp C, Kuemmerle‐Deschner J, Hansmann S, Rieber N, et al. Impaired suppression of synovial fluid CD4+CD25− T cells from patients with juvenile idiopathic arthritis by CD4+CD25+ Treg cells. Arthritis Rheum 2011; 63: 3153 – 62.en_US
dc.identifier.citedreferenceWedderburn LR, Maini MK, Patel A, Beverley PC, Woo P. Molecular fingerprinting reveals non‐overlapping T cell oligoclonality between an inflamed site and peripheral blood. Int Immunol 1999; 11: 535 – 43.en_US
dc.identifier.citedreferenceLemster BH, Michel JJ, Montag DT, Paat JJ, Studenski SA, Newman AB, et al. Induction of CD56 and TCR‐independent activation of T cells with aging. J Immunol 2008; 180: 1979 – 90.en_US
dc.identifier.citedreferenceMartens PB, Goronzy JJ, Schaid D, Weyand CM. Expansion of unusual CD4+ T cells in severe rheumatoid arthritis. Arthritis Rheum 1997; 40: 1106 – 14.en_US
dc.identifier.citedreferenceMartini A, Lovell DJ. Juvenile idiopathic arthritis: state of the art and future perspectives. Ann Rheum Dis 2010; 69: 1260 – 3.en_US
dc.identifier.citedreferenceMartini A. It is time to rethink juvenile idiopathic arthritis classification and nomenclature. Ann Rheum Dis 2012; 71: 1437 – 9.en_US
dc.identifier.citedreferenceMonteiro J, Batliwalla F, Ostrer H, Gregersen PK. Shortened telomeres in clonally expanded CD28−CD8+ T cells imply a replicative history that is distinct from their CD28+CD8+ counterparts. J Immunol 1996; 156: 3587 – 90.en_US
dc.identifier.citedreferenceVallejo AN. CD28 extinction in human T cells: altered functions and the program of T‐cell senescence. Immunol Rev 2005; 205: 158 – 69.en_US
dc.identifier.citedreferenceSharpe AH. Mechanisms of costimulation. Immunol Rev 2009; 229: 5 – 11.en_US
dc.identifier.citedreferenceRamanathan S, Gagnon J, Dubois S, Forand‐Boulerice M, Richter MV, Ilangumaran S. Cytokine synergy in antigen‐independent activation and priming of naive CD8+ T lymphocytes. Crit Rev Immunol 2009; 29: 219 – 39.en_US
dc.identifier.citedreferencePetty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 2004; 31: 390 – 2.en_US
dc.identifier.citedreferenceVallejo AN, Hamel DL Jr, Mueller RG, Ives DG, Michel JJ, Boudreau RM, et al. NK‐like T cells and plasma cytokines, but not anti‐viral serology, define immune fingerprints of resilience and mild disability in exceptional aging. PLoS One 2011; 6: e26558.en_US
dc.identifier.citedreferenceMah LJ, El‐Osta A, Karagiannis TC. γH2AX as a molecular marker of aging and disease. Epigenetics 2010; 5: 129 – 36.en_US
dc.identifier.citedreferenceSharpless NE, DePinho RA. Telomeres, stem cells, senescence, and cancer. J Clin Invest 2004; 113: 160 – 8.en_US
dc.identifier.citedreferenceBaerlocher GM, Vulto I, de Jong G, Lansdorp PM. Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat Protoc 2006; 1: 2365 – 76.en_US
dc.identifier.citedreferenceDe Rosa SC, Herzenberg LA, Roederer M. 11‐color, 13‐parameter flow cytometry: identification of human naive T cells by phenotype, function, and T‐cell receptor diversity. Nat Med 2001; 7: 245 – 8.en_US
dc.identifier.citedreferenceVallejo AN, Brandes JC, Weyand CM, Goronzy JJ. Modulation of CD28 expression: distinct regulatory pathways during activation and replicative senescence. J Immunol 1999; 162: 6572 – 9.en_US
dc.identifier.citedreferenceAbedin S, Michel JJ, Lemster B, Vallejo AN. Diversity of NKR expression in aging T cells and in T cells of the aged: the new frontier into the exploration of protective immunity in the elderly. Exp Gerontol 2005; 40: 537 – 48.en_US
dc.identifier.citedreferenceKoetz K, Bryl E, Spickschen K, O'Fallon WM, Goronzy JJ, Weyand CM. T cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci U S A 2000; 97: 9203 – 8.en_US
dc.identifier.citedreferenceBrunner J, Herrmann M, Metzler M, Gaipl U, Reuter G, Haas JP. The turnover of synovial T cells is higher than in T cells in the peripheral blood in persistent oligoarticular juvenile idiopathic arthritis. Rheumatol Int 2010; 30: 1529 – 32.en_US
dc.identifier.citedreferencePrivratsky JR, Newman DK, Newman PJ. PECAM‐1: conflicts of interest in inflammation. Life Sci 2010; 87: 69 – 82.en_US
dc.identifier.citedreferenceDeaglio S, Mallone R, Baj G, Arnulfo A, Surico N, Dianzani U, et al. CD38/CD31, a receptor/ligand system ruling adhesion and signaling in human leukocytes. Chem Immunol 2000; 75: 99 – 120.en_US
dc.identifier.citedreferenceWeiss A, Stobo JD. Requirement for the coexpression of T3 and the T cell antigen receptor on a malignant human T cell line. J Exp Med 1984; 160: 1284 – 99.en_US
dc.identifier.citedreferenceEck SC, Chang D, Wells AD, Turka LA. Differential down‐regulation of CD28 by B7‐1 and B7‐2 engagement. Transplantation 1997; 64: 1497 – 9.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.