Show simple item record

The Adaptive Nature of Eye Movements in Linguistic Tasks: How Payoff and Architecture Shape Speed‐Accuracy Trade‐Offs

dc.contributor.authorLewis, Richard L.en_US
dc.contributor.authorShvartsman, Michaelen_US
dc.contributor.authorSingh, Satinderen_US
dc.date.accessioned2013-08-02T20:51:37Z
dc.date.available2014-09-02T14:12:53Zen_US
dc.date.issued2013-07en_US
dc.identifier.citationLewis, Richard L.; Shvartsman, Michael; Singh, Satinder (2013). "The Adaptive Nature of Eye Movements in Linguistic Tasks: How Payoff and Architecture Shape Speed‐Accuracy Trade‐Offs." Topics in Cognitive Science 5(3): 581-610. <http://hdl.handle.net/2027.42/99052>en_US
dc.identifier.issn1756-8757en_US
dc.identifier.issn1756-8765en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99052
dc.description.abstractWe explore the idea that eye‐movement strategies in reading are precisely adapted to the joint constraints of task structure, task payoff, and processing architecture. We present a model of saccadic control that separates a parametric control policy space from a parametric machine architecture , the latter based on a small set of assumptions derived from research on eye movements in reading (Engbert, Nuthmann, Richter, & Kliegl, 2005; Reichle, Warren, & McConnell, 2009). The eye‐control model is embedded in a decision architecture (a machine and policy space) that is capable of performing a simple linguistic task integrating information across saccades. Model predictions are derived by jointly optimizing the control of eye movements and task decisions under payoffs that quantitatively express different desired speed‐accuracy trade‐offs. The model yields distinct eye‐movement predictions for the same task under different payoffs, including single‐fixation durations, frequency effects, accuracy effects, and list position effects, and their modulation by task payoff. The predictions are compared to—and found to accord with—eye‐movement data obtained from human participants performing the same task under the same payoffs, but they are found not to accord as well when the assumptions concerning payoff optimization and processing architecture are varied. These results extend work on rational analysis of oculomotor control and adaptation of reading strategy (Bicknell & Levy, ; McConkie, Rayner, & Wilson, 1973; Norris, 2009; Wotschack, 2009) by providing evidence for adaptation at low levels of saccadic control that is shaped by quantitatively varying task demands and the dynamics of processing architecture.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherHillsdale, NJen_US
dc.subject.otherEye Movementsen_US
dc.subject.otherReadingen_US
dc.subject.otherTask Effectsen_US
dc.subject.otherBounded Optimal Controlen_US
dc.subject.otherSpeed‐Accuracy Trade‐Offen_US
dc.subject.otherPsycholinguisticsen_US
dc.titleThe Adaptive Nature of Eye Movements in Linguistic Tasks: How Payoff and Architecture Shape Speed‐Accuracy Trade‐Offsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurology and Neurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23757203en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99052/1/tops12032.pdf
dc.identifier.doi10.1111/tops.12032en_US
dc.identifier.sourceTopics in Cognitive Scienceen_US
dc.identifier.citedreferenceRatcliff, R. ( 1978 ). A theory of memory retrieval. Psychological Review, 85, 59 – 108.en_US
dc.identifier.citedreferenceReichle, E. D., Rayner, K., & Pollatsek, A. ( 2003 ). The E‐Z reader model of eye‐movement control in reading: Comparisons to other models. Behavioral and Brain Sciences, 26 ( 4 ), 445.en_US
dc.identifier.citedreferenceWald, A., & Wolfowitz, J. ( 1948 ). Optimum character of the sequential probability ratio test. The Annals of Mathematical Statistics, 19 ( 3 ), 326 – 339.en_US
dc.identifier.citedreferenceWagenmakers, E., Ratcliff, R., Gomez, P., & McKoon, G. ( 2008 ). A diffusion model account of criterion shifts in the lexical decision task. Journal of Memory and Language, 58 ( 1 ), 140 – 159.en_US
dc.identifier.citedreferenceVanRullen, R., & Thorpe, S. J. ( 2001 ). The time course of visual processing: From early perception to decision‐making. Journal of Cognitive Neuroscience, 13 ( 4 ), 454 – 461.en_US
dc.identifier.citedreferenceTanner, W. P., & Swets, J. A. ( 1954 ). A decision‐making theory of visual detection. Psychological Review, 61 ( 6 ), 401.en_US
dc.identifier.citedreferenceSutton, R., & Barto, A. ( 1998 ). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.en_US
dc.identifier.citedreferencePinheiro, J. C., & Bates, D. M. ( 2000 ). Mixed effects models in S and S‐plus. New York: Springer.en_US
dc.identifier.citedreferenceR Development Core Team. ( 2011 ). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Available at: http://www.R-project.org/ (ISBN 3‐900051‐07‐0). Accessed Aug 1, 2012.en_US
dc.identifier.citedreferenceRabbitt, P. ( 1979 ). How old and young subjects monitor and control responses for accuracy and speed. British Journal of Psychology, 70 ( 2 ), 305 – 311.en_US
dc.identifier.citedreferenceRayner, K., & Raney, G. E. ( 1996 ). Eye movement control in reading and visual search: Effects of word frequency. Psychonomic Bulletin & Review, 3, 245 – 248.en_US
dc.identifier.citedreferenceStone, M. ( 1960 ). Models for choice‐reaction time. Psychometrika, 25 ( 3 ), 251 – 260.en_US
dc.identifier.citedreferenceStarns, J. J., & Ratcliff, R. ( 2010 ). The effects of aging on the speed‐accuracy compromise: Boundary optimality in the diffusion model. Psychology and Aging, 25 ( 2 ), 377 – 390.en_US
dc.identifier.citedreferenceAnderson, J. R. ( 1990 ). The adaptive character of thought. Hillsdale, NJ: Lawrence Erlbaum.en_US
dc.identifier.citedreferenceBallard, D. H., & Hayhoe, M. M. ( 2009 ). Modelling the role of task in the control of gaze. Visual Cognition, 17 ( 6–7 ), 1185 – 1204.en_US
dc.identifier.citedreferenceBicknell, K., & Levy, R. ( 2010a ). Rational eye movements in reading combining uncertainty about previous words with contextual probability. In S. Ohlsson, & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society, (pp. 1142–1147). Austin, TX: Cognitive Science Society.en_US
dc.identifier.citedreferenceBicknell, K., & Levy, R. ( 2010b ). A rational model of eye movement control in reading. Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, 1168 – 1178.en_US
dc.identifier.citedreferenceBicknell, K., & Levy, R. ( 2012 ). The utility of modeling word identification from visual input within models of eye movements in reading. Visual Cognition, 20 ( 4–5 ), 422 – 456.en_US
dc.identifier.citedreferenceBogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. ( 2006 ). The physics of optimal decision making: A formal analysis of models of performance in two‐alternative forced‐choice tasks. Psychological Review, 113 ( 4 ), 700 – 765.en_US
dc.identifier.citedreferenceBrodersen, K. H., Penny, W. D., Harrison, L. M., Daunizeau, J., Ruff, C. C., Duzel, E., et al. ( 2008 ). Integrated Bayesian models of learning and decision making for saccadic eye movements. Neural Networks, 21 ( 9 ), 1247 – 1260.en_US
dc.identifier.citedreferenceEdwards, W. ( 1961 ). Behavioral decision theory. Annual Review of Psychology, 12, 473 – 498.en_US
dc.identifier.citedreferenceEdwards, W. ( 1965 ). Optimal strategies for seeking information: Models for statistics, choice reaction‐times, and human information‐processing. Journal of Mathematical Psychology, 2 ( 2 ), 312 – 329.en_US
dc.identifier.citedreferenceEngbert, R., Nuthmann, A., Richter, E., & Kliegl, R. ( 2005 ). Swift: A dynamical model of saccade generation during reading. Psychological Review, 112 ( 4 ), 777 – 813.en_US
dc.identifier.citedreferenceForster, K. ( 1979 ). Levels of processing and the structure of the language processor. In W. E. Cooper & E. C. Walker (Eds.), Sentence processing: Psycholinguistic studies presented to merrill garrett. Hillsdale, NJ: Lawrence Erlbaum.en_US
dc.identifier.citedreferenceGeisler, W. ( 1989 ). Sequential ideal‐observer analysis of visual discriminations. Psychological Review, 96 ( 2 ), 267.en_US
dc.identifier.citedreferenceGrainger, J. ( 1990 ). Word frequency and neighborhood frequency effects in lexical decision and naming. Journal of Memory and Language, 29 ( 2 ), 228 – 244.en_US
dc.identifier.citedreferenceGreen, D. M., & Swets, J. A. ( 1966 ). Signal detection theory and psychophysics. New York: Wiley.en_US
dc.identifier.citedreferenceHale, J. T. ( 2011 ). What a rational parser would do. Cognitive Science, 35, 399 – 443.en_US
dc.identifier.citedreferenceHowes, A., Lewis, R. L., & Vera, A. H. ( 2009 ). Rational adaptation under task and processing constraints: Implications for testing theories of cognition and action. Psychological Review, 116 ( 4 ), 717 – 751.en_US
dc.identifier.citedreferenceKaelbling, L. P., Littman, M. L., & Moore, A. W. ( 1996 ). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237 – 285.en_US
dc.identifier.citedreferenceSmith, G. A., & Brewer, N. ( 1995 ). Slowness and age: Speed‐accuracy mechanisms. Psychology and Aging, 10 ( 2 ), 238 – 247.en_US
dc.identifier.citedreferenceSingh, S., Jaakkola, T., Littman, M. L., & Szepesvari, C. ( 2000 ). Convergence results for single‐step on‐policy reinforcement learning algorithms. Machine Learning, 38 ( 3 ), 287 – 308.en_US
dc.identifier.citedreferenceSalverda, A. P., Brown, M., & Tanenhaus, M. K. ( 2011 ). A goal‐based perspective on eye movements in visual‐world studies. Acta Psychologica, 137 ( 2 ), 172 – 180.en_US
dc.identifier.citedreferenceRussell, S. J., Subramanian, D., & Parr, R. ( 1993 ). Provably bounded optimal agents. In R. Bajcsy (Ed.), Ijcai'93: Proceedings of the 13th international joint conference on artificial intelligence (pp. 338 – 344 ). San Francisco, CA: Morgan Kaufmann Publishers Inc.en_US
dc.identifier.citedreferenceRothkopf, C. A., Ballard, D. H., Hayhoe, M. M., & Regan, O. ( 2007 ). Task and context determine where you look. Journal of Vision, 7, 1 – 20.en_US
dc.identifier.citedreferenceWotschack, C. ( 2009 ). Eye movements in reading strategies: How reading strategies modulate effects of distributed processing and oculomotor control. Potsdam: Universitätsverlag Potsdam.en_US
dc.identifier.citedreferenceReichle, E. D., Reineberg, A. E., & Schooler, J. W. ( 2010 ). Eye movements during mindless reading. Psychological Science, 21, 1300 – 1310.en_US
dc.identifier.citedreferenceReichle, E. D., Warren, T., & McConnell, K. ( 2009 ). Using E‐Z reader to model the effects of higher level language processing on eye movements during reading. Psychonomic Bulletin Review, 16, 1 – 21.en_US
dc.identifier.citedreferenceKucera, H., & Francis, S. ( 1967 ). Computational analysis of present‐day American English. Providence, RI: Brown University Press.en_US
dc.identifier.citedreferenceLaubrock, J., Kliegl, R., & Engbert, R. ( 2006 ). SWIFT explorations of age differences in eye movements during reading. Neuroscience and biobehavioral reviews, 30 ( 6 ), 872 – 884.en_US
dc.identifier.citedreferenceLegge, G. E., Klitz, T. S., & Tjan, B. S. ( 1997 ). Mr Chips: An ideal‐observer model of reading [Proceedings Paper]. Psychological Review, 104 ( 3 ), 524 – 553.en_US
dc.identifier.citedreferenceLevy, R., Bicknell, K., Slattery, T., & Rayner, K. ( 2009 ). Eye movement evidence that readers maintain and act on uncertainty about past linguistic input. Proceedings of the National Academy of Sciences of the United States of America, 106 ( 50 ), 21086 – 21090.en_US
dc.identifier.citedreferenceLewis, R. L., & Vasishth, S. ( 2005 ). An activation‐based model of sentence processing as skilled memory retrieval. Cognitive Science, 29, 375 – 419.en_US
dc.identifier.citedreferenceLewis, R. L., Vasishth, S., & Van Dyke, J. A. ( 2006 ). Computational principles of working memory in sentence comprehension. Trends in Cognitive Sciences, 10, 44 – 54.en_US
dc.identifier.citedreferenceMcConkie, G. W., Rayner, K., & Wilson, S. J. ( 1973 ). Experimental manipulation of reading strategies. Journal of Educational Psychology, 65, 1.en_US
dc.identifier.citedreferenceMeyer, D. E., & Kieras, D. E. ( 1997 ). A computational theory of executive cognitive processes and multiple‐task performance: Part 1. Basic mechanisms. Psychological Review, 104, 3 – 65.en_US
dc.identifier.citedreferenceMeyer, D. E., & Schvaneveldt, R. W. ( 1971 ). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90, 22 – 34.en_US
dc.identifier.citedreferenceNewell, A. ( 1973 ). You can't play 20 questions with nature and win: Projective comments on the papers of this symposium. In W. G. Chase (Ed.), Visual information processing (pp. 283 – 308 ). New York: Academic Press.en_US
dc.identifier.citedreferenceNorris, D. ( 2006 ). The Bayesian reader: Explaining word recognition as an optimal Bayesian decision process. Psychological Review, 113 ( 2 ), 327 – 357.en_US
dc.identifier.citedreferenceNorris, D. ( 2009 ). Putting it all together: A unified account of word recognition and reaction‐time distributions. Psychological Review, 116 ( 1 ), 207 – 219.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.