Show simple item record

Dynamic characteristics and fast load following of 5‐kW class tubular solid oxide fuel cell/micro‐gas turbine hybrid systems

dc.contributor.authorKarakoc, Hikmeten_US
dc.contributor.authorMidilli, Adnanen_US
dc.contributor.authorTuran, Onderen_US
dc.date.accessioned2013-08-02T20:51:38Z
dc.date.available2014-10-06T19:17:44Zen_US
dc.date.issued2013-08en_US
dc.identifier.citationKarakoc, Hikmet; Midilli, Adnan; Turan, Onder (2013). "Dynamic characteristics and fast load following of 5‐kW class tubular solid oxide fuel cell/micro‐gas turbine hybrid systems." International Journal of Energy Research 37(10): 1242-1255. <http://hdl.handle.net/2027.42/99053>en_US
dc.identifier.issn0363-907Xen_US
dc.identifier.issn1099-114Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99053
dc.publisherElsevieren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherThermal Analysisen_US
dc.subject.otherLoad Followingen_US
dc.subject.otherOptimizationen_US
dc.subject.otherSOFC‐GTen_US
dc.titleDynamic characteristics and fast load following of 5‐kW class tubular solid oxide fuel cell/micro‐gas turbine hybrid systemsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99053/1/er3031.pdf
dc.identifier.doi10.1002/er.3031en_US
dc.identifier.sourceInternational Journal of Energy Researchen_US
dc.identifier.citedreferenceAchenbach E, Riensche E. Methane steam reforming kinetics for solid oxide fuel cells. J Power Sources 1994; 52 ( 2 ): 283 – 288.en_US
dc.identifier.citedreferenceEG&G Technical Services, Inc. Fuel Cell Handbook ( Seventh ). 2004.en_US
dc.identifier.citedreferenceLarminie J, Dicks A. Fuel Cell System Explained. John Wiley and Sons Ltd 2004.en_US
dc.identifier.citedreferenceSinghal SC, Kendall K. High Temperature Solid Oxide Fuel CellsOh. Elsevier, 2003.en_US
dc.identifier.citedreferenceCampanari S. Power Plants based on solid oxide fuel cells combined with gas turbine cycles. Ph.D: Dissertation, 1998.en_US
dc.identifier.citedreferencePalsson A, Selimovic A, Sjunnesson L. Combined Solid Oxide Fuel Cell and Gas Turbine Systems for Efficient Power and Heat Generation. J Power Sources 2000; 86: 442 – 448.en_US
dc.identifier.citedreferenceRoberts RA, Brouwer J, Jabbari F, Junker T, Ghezel‐Ayagh H. Control design of an atmospheric solid oxide fuel cell/gas turbine hybrid system: Variable versus fixed speed gas turbine operation. J Power Sources 2006; 161: 484 – 491.en_US
dc.identifier.citedreferenceRoberts RA, Brouwer J. Dynamic Simulation of a pressurized 220kW Solid oxide fuel‐cell gas‐turbine hybrid system: Modeled performance compared to measured results. J Power Sources 2006; 3: 18 – 25.en_US
dc.identifier.citedreferenceTucker D., Lawson L., Gemmen R.. Evaluation of Hybrid Fuel Cell Turbine System Startup With Compressor Bleed. ASME Turbo Expo, 2005; GT2005–68784.en_US
dc.identifier.citedreferenceFerrari M.L., Pascenti M., Bertone R., Magistri L. Hybrid Simulation Facility Based on Commercial 100kW Micro Gas Turbine. ASME Journal of Fuel Cell Science and Technology, 2009; Vol. 6, 031008: 1 – 8.en_US
dc.identifier.citedreferencePanne T., Widenhorn A., Aigner M. Steady State Analysis of A SOFC/GT Hybrid Power Plant Test Rig. Proceedings of ASME Turbo Expo, 2008; GT2008–50288.en_US
dc.identifier.citedreferenceTsourapas V. Control analysis of integrated fuel cell systems with energy recuperation devices. In Ph.D. Thesis. University of Michigan, 2007.en_US
dc.identifier.citedreferenceWchter C, Lunderstdt R, Joos F. Dynamic model of a pressurized sofc/gas turbine hybrid power plant for the development of control concepts. Journal of Fuel Cell Science and Technology 2006; 3: 271 – 279.en_US
dc.identifier.citedreferenceXi H. Dynamic modeling and conrol of planar sofc power systems. In Ph.D. Thesis. University of Michigan, 2007.en_US
dc.identifier.citedreferencePadulles J, Ault GW, McDonald JR. An integrated SOFC plant dynamic model for power systems simulation. J Power Sources 2000; 86: 495 – 500.en_US
dc.identifier.citedreferenceAguiar P, Adjiman CS, Brandon NP. Anode‐supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model‐based steady‐state performance. J Power Sources 2004; 138: 120 – 136.en_US
dc.identifier.citedreferenceHall DJ. Transient Modeling and Simulation of a Solid Oxide Fuel Cell. In Ph.D. Dissertation. University of Pittsburgh, 1997.en_US
dc.identifier.citedreferenceStiller C, Thorud B, Seljebo S, Mathisen O, Karoliussen H, Bolland O. Finite‐volume modeling and hybrid‐cycle performance of planar and tubular solid oxide fuel cells. J Power Sources 2005; 141: 227 – 240.en_US
dc.identifier.citedreferenceStiller C, Thorud B, Bolland O. Safe Dynamic Operation of a Simple SOFC/GT Hybrid System. In Proc. of GT2005, ASME Turbo Expo 2005: Power for Land. Sea and Air: Nevada, USA, 2005.en_US
dc.identifier.citedreferenceOh S.‐R., Sun J., Dobbs H., King J. Comparative Performance Assessment of 5kW‐Class Solid Oxide Fuel Cell Engines Integrated with Single/Dual‐Spool Turbochargers, 2011 American Control Conference, San Francisco, California, 2011, pp. 5231–5236.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.