Show simple item record

How specialised must natural enemies be to facilitate coexistence among plants?

dc.contributor.authorSedio, Brian E.en_US
dc.contributor.authorOstling, Annette M.en_US
dc.contributor.authorRis Lambers, Janneke Hilleen_US
dc.date.accessioned2013-08-02T20:51:47Z
dc.date.available2014-10-06T19:17:44Zen_US
dc.date.issued2013-08en_US
dc.identifier.citationSedio, Brian E.; Ostling, Annette M.; Ris Lambers, Janneke Hille (2013). "How specialised must natural enemies be to facilitate coexistence among plants?." Ecology Letters 16(8): 995-1003. <http://hdl.handle.net/2027.42/99082>en_US
dc.identifier.issn1461-023Xen_US
dc.identifier.issn1461-0248en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99082
dc.description.abstractThe Janzen‐Connell hypothesis proposes that plant interactions with host‐specific antagonists can impair the fitness of locally abundant species and thereby facilitate coexistence. However, insects and pathogens that associate with multiple hosts may mediate exclusion rather than coexistence. We employ a simulation model to examine the effect of enemy host breadth on plant species richness and defence community structure, and to assess expected diversity maintenance in example systems. Only models in which plant enemy similarity declines rapidly with defence similarity support greater species richness than models of neutral drift. In contrast, a wide range of enemy host breadths result in spatial dispersion of defence traits, at both landscape and local scales, indicating that enemy‐mediated competition may increase defence‐trait diversity without enhancing species richness. Nevertheless, insect and pathogen host associations in Panama and Papua New Guinea demonstrate a potential to enhance plant species richness and defence‐trait diversity comparable to strictly specialised enemies.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Scientific Publicationsen_US
dc.subject.otherCoexistenceen_US
dc.subject.otherFrequency Dependenceen_US
dc.subject.otherHost Specialisationen_US
dc.subject.otherJanzen‐Connellen_US
dc.subject.otherPlant–Enemy Interactionsen_US
dc.subject.otherSpecies Richnessen_US
dc.subject.otherTropical Foresten_US
dc.subject.otherCommunity Structureen_US
dc.titleHow specialised must natural enemies be to facilitate coexistence among plants?en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23773378en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99082/1/ele12130.pdf
dc.identifier.doi10.1111/ele.12130en_US
dc.identifier.sourceEcology Lettersen_US
dc.identifier.citedreferenceLiu, X.B., Liang, M.X., Etienne, R.S., Wang, Y.F., Staehelin, C. & Yu, S.X. ( 2012 ). Experimental evidence for a phylogenetic Janzen‐Connell effect in a subtropical forest. Ecol. Lett., 15, 111 – 118.en_US
dc.identifier.citedreferenceJanzen, D.H. ( 1970 ). Herbivores and the number of tree species in tropical forests. Am. Nat., 104, 501 – 528.en_US
dc.identifier.citedreferenceJanzen, D.H. ( 1980 ). Specificity of seed‐attacking beetles in a Costa Rican deciduous forest. J. Ecol., 68, 929 – 952.en_US
dc.identifier.citedreferenceJanzen, D.H. ( 1988 ). Ecological characterization of a Costa Rican dry forest caterpillar fauna. Biotropica, 20, 120 – 135.en_US
dc.identifier.citedreferenceJeffries, M.J. & Lawton, J.H. ( 1984 ). Enemy free space and the structure of ecological communities. Biol. J. Linnean Soc., 23, 269 – 286.en_US
dc.identifier.citedreferenceJohnson, D.J., Beaulieu, W.T., Bever, J.D. & Clay, K. ( 2012 ). Conspecific negative density dependence and forest diversity. Science, 336, 904 – 907.en_US
dc.identifier.citedreferenceKursar, T.A., Dexter, K.G., Lokvam, J., Pennington, R.T., Richardson, J.E., Weber, M.G. et al. ( 2009 ). The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc. Natl Acad. Sci. USA, 106, 18073 – 18078.en_US
dc.identifier.citedreferenceLeigh, E.G., Davidar, P., Dick, C.W., Puyravaud, J.P., Terborgh, J., ter Steege, H. et al. ( 2004 ). Why do some tropical forests have so many species of trees? Biotropica, 36, 447 – 473.en_US
dc.identifier.citedreferenceLevin, S.A. ( 1970 ). Community equilibria and stability, and an extension of competitive exclusion principle. Am. Nat., 104, 413 – 423.en_US
dc.identifier.citedreferenceLewinsohn, T.M. & Roslin, T. ( 2008 ). Four ways towards tropical herbivore megadiversity. Ecol. Lett., 11, 398 – 416.en_US
dc.identifier.citedreferenceMeszena, G., Gyllenberg, M., Pasztor, L. & Metz, J.A.J. ( 2006 ). Competitive exclusion and limiting similarity: a unified theory. Theor. Popul. Biol., 69, 68 – 87.en_US
dc.identifier.citedreferenceMetz, M.R., Sousa, W.P. & Valencia, R. ( 2010 ). Widespread density‐dependent seedling mortality promotes species coexistence in a highly diverse Amazonian rain forest. Ecology, 91, 3675 – 3685.en_US
dc.identifier.citedreferenceNovotny, V., Basset, Y., Miller, S.E., Weiblen, G.D., Bremer, B., Cizek, L. et al. ( 2002 ). Low host specificity of herbivorous insects in a tropical forest. Nature, 416, 841 – 844.en_US
dc.identifier.citedreferenceNovotny, V., Miller, S.E., Baje, L., Balagawi, S., Basset, Y., Cizek, L. et al. ( 2010 ). Guild‐specific patterns of species richness and host specialization in plant‐herbivore food webs from a tropical forest. J. Anim. Ecol., 79, 1193 – 1203.en_US
dc.identifier.citedreferenceOdegaard, F., Diserud, O.H., Engen, S. & Aagaard, K. ( 2000 ). The magnitude of local host specificity for phytophagous insects and its implications for estimates of global species richness. Conserv. Biol., 14, 1182 – 1186.en_US
dc.identifier.citedreferenceOdegaard, F., Diserud, O.H. & Ostbye, K. ( 2005 ). The importance of plant relatedness for host utilization among phytophagous insects. Ecol. Lett., 8, 612 – 617.en_US
dc.identifier.citedreferenceR Development Core Team ( 2011 ). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3‐900051‐07‐0, Available at: http://www.R-project.org/. Last accessed 12 April 2013.en_US
dc.identifier.citedreferenceSilvertown, J. ( 2004 ). Plant coexistence and the niche. Trends Ecol. Evol., 19, 605 – 611.en_US
dc.identifier.citedreferenceTerborgh, J. ( 2012 ). Enemies maintain hyperdiverse tropical forests. Am. Nat., 179, 303 – 314.en_US
dc.identifier.citedreferenceTilman, D. ( 1982 ). Resource Competition and Community Structure. Princeton University Press, Princeton, NJ.en_US
dc.identifier.citedreferenceWebb, C.O. ( 2000 ). Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Nat., 156, 145 – 155.en_US
dc.identifier.citedreferenceWebb, C.O. & Peart, D.R. ( 1999 ). Seedling density dependence promotes coexistence of Bornean rain forest trees. Ecology, 80, 2006 – 2017.en_US
dc.identifier.citedreferenceWebb, C.O., Gilbert, G.S. & Donoghue, M.J. ( 2006 ). Phylodiversity‐dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology, 87, S123 – S131.en_US
dc.identifier.citedreferenceWills, C., Condit, R., Foster, R.B. & Hubbell, S.P. ( 1997 ). Strong density‐ and diversity‐related effects help to maintain tree species diversity in a neotropical forest. Proc. Nat. Acad. Sci. USA, 94, 1252 – 1257.en_US
dc.identifier.citedreferenceWink, M. ( 2003 ). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64, 3 – 19.en_US
dc.identifier.citedreferenceWright, S.J. ( 2002 ). Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 130, 1 – 14.en_US
dc.identifier.citedreferenceAdler, F.R. & Muller‐Landau, H.C. ( 2005 ). When do localized natural enemies increase species richness? Ecol. Lett., 8, 438 – 447.en_US
dc.identifier.citedreferenceAgrawal, A.A. & Fishbein, M. ( 2006 ). Plant defense syndromes. Ecology, 87, S132 – S149.en_US
dc.identifier.citedreferenceAugspurger, C.K. ( 1990 ). Spatial patterns of damping‐off diseases during seedling recruitment in tropical forests. In: Pests, Pathogens and Plant Communities (eds Burdon, J.J. & Leather, S.R. ). Blackwell Scientific Publications, Oxford, UK, pp. 131 – 144.en_US
dc.identifier.citedreferenceBagchi, R., Press, M.C. & Scholes, J.D. ( 2010 ). Evolutionary history and distance dependence control survival of dipterocarp seedlings. Ecol. Lett., 13, 51 – 59.en_US
dc.identifier.citedreferenceBarrett, L.G. & Heil, M. ( 2012 ). Unifying concepts and mechanisms in the specificity of plant‐enemy interactions. Trends Plant Sci., 17, 282 – 292.en_US
dc.identifier.citedreferenceBasset, Y. ( 1992 ). Host specificity of arboreal and free‐living insect herbivores in rain‐forests. Biol. J. Linnean Soc., 47, 115 – 133.en_US
dc.identifier.citedreferenceBecerra, J.X. ( 1997 ). Insects on plants: macroevolutionary chemical trends in host use. Science, 276, 253 – 256.en_US
dc.identifier.citedreferenceBecerra, J.X. ( 2007 ). The impact of herbivore‐plant coevolution on plant community structure. Proc. Natl Acad. Sci. USA, 104, 7483 – 7488.en_US
dc.identifier.citedreferenceBever, J.D. ( 2003 ). Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phyt., 157, 465 – 473.en_US
dc.identifier.citedreferenceCavender‐Bares, J., Ackerly, D.D., Baum, D.A. & Bazzaz, F.A. ( 2004 ). Phylogenetic overdispersion in Floridian oak communities. Am. Nat., 163, 823 – 843.en_US
dc.identifier.citedreferenceChesson, P. & Kuang, J.J. ( 2008 ). The interaction between predation and competition. Nature, 456, 235 – 238.en_US
dc.identifier.citedreferenceComita, L.S., Muller‐Landau, H.C., Aguilar, S. & Hubbell, S.P. ( 2010 ). Asymmetric density dependence shapes species abundances in a tropical tree community. Science, 329, 330 – 332.en_US
dc.identifier.citedreferenceConnell, J.H. ( 1971 ). On the role of natural enemies in preventing competitive exclusion in some marine animals and rain forest trees. In: Dynamics of Populations (eds Boer, P.J.D. & Gradwell, G.R. ). Center for Agricultural Publication and Documentation, Wageningen, pp. 298 – 312.en_US
dc.identifier.citedreferenceDyer, L.A., Singer, M.S., Lill, J.T., Stireman, J.O., Gentry, G.L., Marquis, R.J., et al. ( 2007 ). Host specificity of Lepidoptera in tropical and temperate forests. Nature, 448, 696 – 699.en_US
dc.identifier.citedreferenceDyer, L.A., Letourneau, D.K., Vega Chavarria, G. & Salazar Amoretti, D. ( 2010 ). Herbivores on a dominant understory shrub increase local plant diversity in rain forest communities. Ecology, 91, 3707 – 3718.en_US
dc.identifier.citedreferenceEhrlich, P.R. & Raven, P.H. ( 1964 ). Butterflies and plants – a study in coevolution. Evolution, 18, 586 – 608.en_US
dc.identifier.citedreferenceFreckleton, R.P. & Lewis, O.T. ( 2006 ). Pathogens, density dependence and the coexistence of tropical trees. Proc. R. Soc. B, 273, 2909 – 2916.en_US
dc.identifier.citedreferenceGilbert, G.S. ( 2005 ). Dimensions of plant disease in tropical forests. In: Biotic Interactions in the Tropics: Their Role in the Maintenance of Species Diversity (eds. Burslem, D.R.F.P., Pinard, M.A. & Hartley, S.E. ). Cambridge University Press, Cambridge, UK, pp. 141 – 164.en_US
dc.identifier.citedreferenceGilbert, G.S. & Webb, C.O. ( 2007 ). Phylogenetic signal in plant pathogen‐host range. Proc. Natl Acad. Sci. USA, 104, 4979 – 4983.en_US
dc.identifier.citedreferenceHanski, I. ( 1981 ). Coexistence of competitors in patchy environments with and without predation. Oikos, 37, 306 – 312.en_US
dc.identifier.citedreferenceHarms, K.E., Wright, S.J., Calderon, O., Hernandez, A. & Herre, E.A. ( 2000 ). Pervasive density‐dependent recruitment enhances seedling diversity in a tropical forest. Nature, 404, 493 – 495.en_US
dc.identifier.citedreferenceHilleRisLambers, J., Clark, J.S. & Beckage, B. ( 2002 ). Density‐dependent mortality and the latitudinal gradient in species diversity. Nature, 417, 732 – 735.en_US
dc.identifier.citedreferenceHolt, R.D. ( 1977 ). Predation, apparent competition, and structure of prey communities. Theor. Popul. Biol., 12, 197 – 229.en_US
dc.identifier.citedreferenceHubbell, S.P. ( 2001 ). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.