Show simple item record

Tracking circadian rhythms of bone mineral deposition in murine calvarial organ cultures

dc.contributor.authorMcelderry, John‐david Pen_US
dc.contributor.authorZhao, Guishengen_US
dc.contributor.authorKhmaladze, Alexanderen_US
dc.contributor.authorWilson, Christopher Gen_US
dc.contributor.authorFranceschi, Renny Ten_US
dc.contributor.authorMorris, Michael Den_US
dc.date.accessioned2013-08-02T20:51:48Z
dc.date.available2014-10-06T19:17:44Zen_US
dc.date.issued2013-08en_US
dc.identifier.citationMcelderry, John‐david P ; Zhao, Guisheng; Khmaladze, Alexander; Wilson, Christopher G; Franceschi, Renny T; Morris, Michael D (2013). "Tracking circadian rhythms of bone mineral deposition in murine calvarial organ cultures." Journal of Bone and Mineral Research 28(8): 1846-1854. <http://hdl.handle.net/2027.42/99084>en_US
dc.identifier.issn0884-0431en_US
dc.identifier.issn1523-4681en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99084
dc.description.abstractOsteoblasts, which orchestrate the deposition of small apatite crystals through the expression of nucleating proteins, have been shown to also express clock genes associated with the circadian signaling pathway. We hypothesized that protein‐mediated bone mineralization may be linked to circadian oscillator mechanisms functioning in peripheral bone tissue. In this study, Per1 expression in ex vivo neonatal murine calvaria organ cultures was monitored for 6 days using a Per1 ‐ luciferase transgene as a bioluminescent indicator of clock function. Fluctuations in Per1 expression had a period of 25 ± 4 hours ( n  = 14) with early expression at CT09:59 ± 03:37 (CT = circadian time). We also established the kinetics of mineral deposition in developing bone by using noninvasive Raman microscopy to track mineral accumulation in calvarial tissue. The content and quality of newly deposited mineral was continually examined at the interparietal bone/fontanel boundary for a period of 6 days with 1‐hour temporal resolution. Using this approach, mineralization over time exhibited bursts of mineral deposition followed by little or no deposition, which was recurrent with a periodicity of 26.8 ± 9.6 hours. As many as six near‐daily mineralization events were observed in the calvaria before deposition ceased. Earliest mineralization events occurred at CT16:51 ± 03:45, which is 6 hours behind Per1 expression. These findings are consistent with the hypothesis that mineralization in developing bone tissue is regulated by a local circadian oscillator mechanism.en_US
dc.publisherCambridge University Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAPATITEen_US
dc.subject.otherMINERALIZATIONen_US
dc.subject.otherCRYSTALLINITYen_US
dc.subject.otherOSSIFICATIONen_US
dc.subject.otherRAMAN SPECTROSCOPYen_US
dc.subject.otherCIRCADIAN RHYTHMen_US
dc.titleTracking circadian rhythms of bone mineral deposition in murine calvarial organ culturesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialitiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23505073en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99084/1/jbmr1924.pdf
dc.identifier.doi10.1002/jbmr.1924en_US
dc.identifier.sourceJournal of Bone and Mineral Researchen_US
dc.identifier.citedreferenceGrynpas MD, Omelon S. Transient precursor strategy or very small biological apatite crystals?. Bone. 2007; 41 ( 2 ): 162 – 4.en_US
dc.identifier.citedreferenceZhang EE, Kay SA. Clocks not winding down: unravelling circadian networks. Nat Rev Mol Cell Biol. 2010; 11 ( 11 ): 764 – 76.en_US
dc.identifier.citedreferenceMengatto CM, Mussano F, Honda Y, Colwell CS, Nishimura I. Circadian rhythm and cartilage extracellular matrix genes in osseointegration: a genome‐wide screening of implant failure by vitamin D deficiency. PLOS One. 2011; 6 ( 1 ): e15848.en_US
dc.identifier.citedreferenceHanyu R, Hayata T, Nagao M, Saita Y, Hemmi H, Notomi T, Nakamoto T, Schipani E, Knonenbery H, Kaneko K, Kurosawa H, Ezura Y, Noda M. Per‐1 is a specific clock gene regulated by parathyroid hormone (PTH) signaling in osteoblasts and is functional for the transcriptional events induced by PTH. J Cell Biochem. 2011; 112 ( 2 ): 433 – 8.en_US
dc.identifier.citedreferenceGundberg CM, Markowitz ME, Mizruchi M, Rosen JF. Osteocalcin in human serum: a circadian rhythm. J Clin Endocrinol Metab. 1985; 60 ( 4 ): 736 – 9.en_US
dc.identifier.citedreferenceHunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA, Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J. 1996; 317 ( Pt 1 ): 59 – 64.en_US
dc.identifier.citedreferenceGorski JP. Biomineralization of bone: a fresh view of the roles of non‐collagenous proteins. Front Biosci. 2012; 17: 2598 – 621.en_US
dc.identifier.citedreferenceColfen H, Biomineralization: a crystal‐clear view. Nat Mater. 2010; 9: 960 – 1.en_US
dc.identifier.citedreferenceNudelman F, Pieterse K, George A, Bomans PHH, Friedrich H, Brylka LJ, Hilbers PAJ. With Gd, Sommerdijk NAJM. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater. 2010; 9: 1004 – 9.en_US
dc.identifier.citedreferenceCrane NJ, Popescu V, Morris MD, Steenhuis P, Ignelzi JMA. Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone. 2006; 39 ( 3 ): 434 – 42.en_US
dc.identifier.citedreferenceWeiner S. Transient precursor strategy in mineral formation of bone. Bone. 2006; 39 ( 3 ): 431 – 3.en_US
dc.identifier.citedreferenceWilsbacher LD, Yamazaki S, Herzog ED, Song EJ, Radcliffe LA, Abe M, Block G, Spitznagel E, Menaker M, Takahashi JS. Photic and circadian expression of luciferase in mPeriod1‐luc transgenic mice in vivo. Proc Natl Acad Sci U S A. 2002; 99 ( 1 ): 489 – 94.en_US
dc.identifier.citedreferenceWang D, Christensen K, Chawla K, Xiao G, Krebsbach PH, Franceschi RT. Isolation and characterization of MC3T3‐E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J Bone Miner Res. 1999; 14 ( 6 ): 893 – 03.en_US
dc.identifier.citedreferenceLi Y, Ge C, Franceschi RT. Differentiation‐dependent association of phosphorylated extracellular signal‐regulated kinase with the chromatin of osteoblast‐related genes. J Bone Miner Res. 2010; 25 ( 1 ): 154 – 63.en_US
dc.identifier.citedreferencePress WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C. 2nd ed. New York: Cambridge University Press; 1992.en_US
dc.identifier.citedreferenceMcElderry J‐DP, Kole MR, Morris MD. Repeated freeze‐thawing of bone tissue affects Raman bone quality measurements. J Biomed Optics. 2011; 16 ( 7 ): 071407.en_US
dc.identifier.citedreferenceRelogio A, Westermark PO, Wallach T, Schellenberg K, Kramer A, Herzel H. Tuning the mammalian circadian clock: robust synergy of two loops. PLoS Comput Biol. 2011; 7 ( 12 ): e1002309.en_US
dc.identifier.citedreferenceLowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome‐wide levels of temporal organization. Annu Rev Genomics Hum Genet. 2004; 5: 407 – 1.en_US
dc.identifier.citedreferenceKoike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science. 2012; 338 ( 6105 ): 349 – 54.en_US
dc.identifier.citedreferenceKazanci M, Fratzl P, Klaushofer K, Paschalis EP. Complementary information on in vitro conversion of amorphous (precursor) calcium phosphate to hydroxyapatite from Raman microspectroscopy and wide‐angle X‐ray scattering. Calcif Tissue Int. 2006; 79 ( 5 ): 354 – 9.en_US
dc.identifier.citedreferenceGorski JP. Is all bone the same? Distinctive distributions and properties of non‐collagenous matrix proteins in lamellar vs. woven bone imply the existence of different underlying osteogenic mechanisms. Crit Rev Oral Biol Med. 1998; 9 ( 2 ): 201 – 23.en_US
dc.identifier.citedreferenceBonucci E. Bone mineralization. Front Biosci. 2012; 17: 100 – 28.en_US
dc.identifier.citedreferenceBaig AA, Fox JL, Young RA, Wang Z, Hsu J, Higuchi WI, Chhettry A, Zhuang H, Otsuka M. Relationships among carbonated apatite solubility, crystallite size, and microstrain parameters. Calcif Tissue Int. 1999; 64 ( 5 ): 437 – 49.en_US
dc.identifier.citedreferenceCamacho NP, Hou L, Toledano TR, Ilg WA, Brayton CF, Raggio CL, Root L, Boskey AL. The material basis for reduced mechanical properties in oim mice bones. J Bone Miner Res. 1999; 14 ( 2 ): 264 – 72.en_US
dc.identifier.citedreferenceWojtowicz A, Dziedzic‐Goclawska A, Kaminski A, Stachowicz W, Wojtowicz K, Marks SC Jr, Yamauchi M. Alteration of mineral crystallinity and collagen cross‐linking of bones in osteopetrotic toothless (tl/tl) rats and their improvement after treatment with colony stimulating factor‐1. Bone. 1997; 20 ( 2 ): 127 – 32.en_US
dc.identifier.citedreferenceLuchavova M, Zikan V, Michalska D, Raska I Jr, Kubena AA, Stepan JJ. The effect of timing of teriparatide treatment on the circadian rhythm of bone turnover in postmenopausal osteoporosis. Eur J Endocrinol. 2011; 164 ( 4 ): 643 – 8.en_US
dc.identifier.citedreferenceShao P, Ohtsuka‐Isoya M, Shinoda H. Circadian rhythms in serum bone markers and their relation to the effect of etidronate in rats. Chronobiol Int. 2003; 20 ( 2 ): 325 – 36.en_US
dc.identifier.citedreferenceKwon I, Choe HK, Son GH, Kim K. Mammalian molecular clocks. Exp Neurobiol. 2011; 20 ( 1 ): 18 – 28.en_US
dc.identifier.citedreferenceReppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002; 418 ( 6901 ): 935 – 41.en_US
dc.identifier.citedreferenceBalsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000; 289 ( 5488 ): 2344 – 7.en_US
dc.identifier.citedreferenceMaywood ES, O'Neill JS, Chesham JE, Hastings MH. Minireview: The circadian clockwork of the suprachiasmatic nuclei—analysis of a cellular oscillator that drives endocrine rhythms. Endocrinology. 2007; 148 ( 12 ): 5624 – 34.en_US
dc.identifier.citedreferenceSchibler U, Sassone‐Corsi P. A web of circadian pacemakers. Cell. 2002; 111 ( 7 ): 919 – 22.en_US
dc.identifier.citedreferenceMohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012; 35: 445 – 62.en_US
dc.identifier.citedreferenceLee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM. Posttranslational mechanisms regulate the mammalian circadian clock. Cell. 2001; 107 ( 7 ): 855 – 67.en_US
dc.identifier.citedreferenceKume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999; 98 ( 2 ): 193 – 205.en_US
dc.identifier.citedreferenceDuong HA, Robles MS, Knutti D, Weitz CJ. A molecular mechanism for circadian clock negative feedback. Science. 2011; 332 ( 6036 ): 1436 – 9.en_US
dc.identifier.citedreferenceMaronde E, Schilling AF, Seitz S, Schinke T, Schmutz I, van der Horst G, Amling M, Albrecht U. The clock genes Period 2 and Cryptochrome 2 differentially balance bone formation. PLOS One. 2010; 5 ( 7 ): e11527.en_US
dc.identifier.citedreferenceZvonic S, Ptitsyn AA, Kilroy G, Wu X, Conrad SA, Scott LK, Guilak F, Pelled G, Gazit D, Gimble JM. Circadian oscillation of gene expression in murine calvarial bone. J Bone Miner Res. 2007; 22 ( 3 ): 357 – 65.en_US
dc.identifier.citedreferenceGafni Y, Ptitsyn AA, Zilberman Y, Pelled G, Gimble JM, Gazit D. Circadian rhythm of osteocalcin in the maxillomandibular complex. J Dent Res. 2009; 88 ( 1 ): 45 – 50.en_US
dc.identifier.citedreferenceFu L, Patel MS, Bradley A, Wagner EF, Karsenty G. The molecular clock mediates leptin‐regulated bone formation. Cell. 2005; 122 ( 5 ): 803 – 15.en_US
dc.identifier.citedreferenceYamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000; 288 ( 5466 ): 682 – 5.en_US
dc.identifier.citedreferenceLamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A. 2008; 105 ( 39 ): 15172 – 7.en_US
dc.identifier.citedreferenceStorch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, Weitz CJ. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell. 2007; 130 ( 4 ): 730 – 41.en_US
dc.identifier.citedreferenceZvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM. Characterization of peripheral circadian clocks in adipose tissues. Diabetes. 2006; 55 ( 4 ): 962 – 70.en_US
dc.identifier.citedreferenceDuffield GE, Best JD, Meurers BH, Bittner A, Loros JJ, Dunlap JC. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol. 2002; 12 ( 7 ): 551 – 7.en_US
dc.identifier.citedreferenceBalsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 1998; 93 ( 6 ): 929 – 37.en_US
dc.identifier.citedreferenceEdery I. A master CLOCK hard at work brings rhythm to the transcriptome. Genes Dev. 2011; 25 ( 22 ): 2321 – 6.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.