Show simple item record

Concise Review: Role of DEK in Stem/Progenitor Cell Biology

dc.contributor.authorBroxmeyer, Hal E.en_US
dc.contributor.authorMor‐vaknin, Niriten_US
dc.contributor.authorKappes, Ferdinanden_US
dc.contributor.authorLegendre, Maureenen_US
dc.contributor.authorSaha, Anjan K.en_US
dc.contributor.authorOu, Xuanen_US
dc.contributor.authorO'Leary, Heatheren_US
dc.contributor.authorCapitano, Maeganen_US
dc.contributor.authorCooper, Scotten_US
dc.contributor.authorMarkovitz, David M.en_US
dc.date.accessioned2013-09-04T17:18:21Z
dc.date.available2014-10-06T19:17:41Zen_US
dc.date.issued2013-08en_US
dc.identifier.citationBroxmeyer, Hal E.; Mor‐vaknin, Nirit ; Kappes, Ferdinand; Legendre, Maureen; Saha, Anjan K.; Ou, Xuan; O'Leary, Heather; Capitano, Maegan; Cooper, Scott; Markovitz, David M. (2013). "Concise Review: Role of DEK in Stem/Progenitor Cell Biology ." STEM CELLS 31(8): 1447-1453. <http://hdl.handle.net/2027.42/99608>en_US
dc.identifier.issn1066-5099en_US
dc.identifier.issn1549-4918en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99608
dc.description.abstractUnderstanding the factors that regulate hematopoiesis opens up the possibility of modifying these factors and their actions for clinical benefit. DEK, a non‐histone nuclear phosphoprotein initially identified as a putative proto‐oncogene, has recently been linked to regulate hematopoiesis. DEK has myelosuppressive activity in vitro on proliferation of human and mouse hematopoietic progenitor cells and enhancing activity on engraftment of long‐term marrow repopulating mouse stem cells, has been linked in coordinate regulation with the transcription factor C/EBPα, for differentiation of myeloid cells, and apparently targets a long‐term repopulating hematopoietic stem cell for leukemic transformation. This review covers the uniqueness of DEK, what is known about how it now functions as a nuclear protein and also as a secreted molecule that can act in paracrine fashion, and how it may be regulated in part by dipeptidylpeptidase 4, an enzyme known to truncate and modify a number of proteins involved in activities on hematopoietic cells. Examples are provided of possible future areas of investigation needed to better understand how DEK may be regulated and function as a regulator of hematopoiesis, information possibly translatable to other normal and diseased immature cell systems. S TEM C ells 2013;31:1447–1453en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherChromatinen_US
dc.subject.otherDEKen_US
dc.subject.otherHematopoietic Stem Cellsen_US
dc.subject.otherHematopoietic Progenitor Cellsen_US
dc.subject.otherReceptorsen_US
dc.subject.otherDipeptidylpeptidase IVen_US
dc.titleConcise Review: Role of DEK in Stem/Progenitor Cell Biologyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDivision of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherIndiana University School of Medicine, Department of Microbiology/Immunology, 950 West Walnut Street, R2–302, Indianapolis, Indiana 46202en_US
dc.contributor.affiliationotherInstitute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germanyen_US
dc.contributor.affiliationotherDepartment of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indianaen_US
dc.identifier.pmid23733396en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99608/1/1443_ftp.pdf
dc.identifier.doi10.1002/stem.1443en_US
dc.identifier.sourceSTEM CELLSen_US
dc.identifier.citedreferenceMcGarvey T, Rosonina E, McCracken S et al. The acute myeloid leukemia‐associated protein, DEK, forms a splicing‐dependent interaction with exon‐product complexes. J Cell Biol 2000; 150: 309 – 320.en_US
dc.identifier.citedreferenceKim DW, Chae JI, Kim JY et al. Proteomic analysis of apoptosis related proteins regulated by proto‐oncogene protein DEK. J Cell Biochem 2009; 106: 1048 – 1059.en_US
dc.identifier.citedreferenceAravind L, Koonin EV. SAP‐a putative DNA‐binding motif involved in chromosomal organization. Trends Biochem Sci 2000; 25: 112 – 114.en_US
dc.identifier.citedreferenceBöhm F, Kappes F, Scholten I et al. The SAP‐box domain of chromatin protein DEK. Nucleic Acids Res 2005; 33: 1101 – 1110.en_US
dc.identifier.citedreferenceDevany M, Kappes F, Chen KM et al. Solution NMR structure of the N‐terminal domain of the human DEK protein. Protein Sci 2008; 17: 205 – 215.en_US
dc.identifier.citedreferenceFu GK, Grosveld G, Markovitz DM. DEK, an autoantigen involved in a chromosomal translocation in acute myelogenous leukemia, binds to the HIV‐2 enhancer. Proc Natl Acad Sci U S A 1997; 94: 1811 – 1815.en_US
dc.identifier.citedreferenceWaldmann T, Baack M, Richter N et al. Structure‐specific binding of the proto‐oncogene protein DEK to DNA. Nucleic Acids Res 2003; 31: 7003 – 7010.en_US
dc.identifier.citedreferenceWaldmann T, Eckerich C, Baack M et al. The ubiquitous chromatin protein DEK alters the structure of DNA by introducing positive supercoils. J Biol Chem 2002; 277: 24988 – 24994.en_US
dc.identifier.citedreferenceLe Hir H, Gatfield D, Izaurralde E et al. The exon‐exon junction complex provides a binding platform for factors involved in mRNA export and nonsense‐mediated mRNA decay. EMBO J 2001; 20: 4987 – 4997.en_US
dc.identifier.citedreferenceLe Hir H, Izaurralde E, Maquat LE et al. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon‐exon junctions. EMBO J 2000; 19: 6860 – 6869.en_US
dc.identifier.citedreferenceSoares LM, Zanier K, Mackereth C et al. Intron removal requires proofreading of U2AF/3′ splice site recognition by DEK. Science 2006; 312: 1961 – 1965.en_US
dc.identifier.citedreferenceSzer IS, Sierakowska H, Szer W. A novel autoantibody to the putative oncoprotein DEK in pauciarticular onset juvenile rheumatoid arthritis. J Rheumatol 1994; 21: 2136 – 2142.en_US
dc.identifier.citedreferenceMurray KJ, Szer W, Grom AA et al. Antibodies to the 45 kDa DEK nuclear antigen in pauciarticular onset juvenile rheumatoid arthritis and iridocyclitis: selective association with MHC gene. J Rheumatol 1997; 24: 560 – 567.en_US
dc.identifier.citedreferenceKappes F, Burger K, Baack M et al. Subcellular localization of the human proto‐oncogene protein DEK. J Biol Chem 2001; 276: 26317 – 26323.en_US
dc.identifier.citedreferenceMor‐Vaknin N, Punturieri A, Sitwala K et al. The DEK nuclear autoantigen is a secreted chemotactic factor. Mol Cell Biol 2006; 26: 9484 – 9496.en_US
dc.identifier.citedreferenceAgeberg M, Gullberg U, Lindmark A. The involvement of cellular proliferation status in the expression of the human proto‐oncogene DEK. Haematologica 2006; 91: 268 – 269.en_US
dc.identifier.citedreferenceOancea C, Rüster B, Henschler R et al. The t(6;9) associated DEK/CAN fusion protein targets a population of long‐term repopulating hematopoietic stem cells for leukemogenic transformation. Leukemia 2010; 24: 1910 – 1919.en_US
dc.identifier.citedreferenceChristopherson KW 2nd, Hangoc G, Mantel CR et al. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004; 305: 1000 – 1003.en_US
dc.identifier.citedreferenceGotoh A, Takahira H, Geahlen RL et al. Cross‐linking of integrins induces tyrosine phosphorylation of the proto‐oncogene product Vav and the protein tyrosine kinase Syk in human factor‐dependent myeloid cells. Cell Growth Differ 1997; 8: 721 – 729.en_US
dc.identifier.citedreferenceGotoh A, Takahira H, Mantel C et al. Steel factor induces serine phosphorylation of Stat3 in human growth factor‐dependent myeloid cell lines. Blood 1996; 88: 138 – 145.en_US
dc.identifier.citedreferenceHendrie PC, Broxmeyer HE. Myeloid cell proliferation stimulated by steel factor is pertussis toxin sensitive and enhanced by cholera toxin. Int J Immunopharmacol 1994; 16: 547 – 560.en_US
dc.identifier.citedreferenceHendrie PC, Miyazawa K, Yang YC et al. Mast cell growth factor (c‐kit ligand) enhances cytokine stimulation of proliferation of the human factor‐dependent cell line, M07e. Exp Hematol 1991; 19: 1031 – 1037.en_US
dc.identifier.citedreferenceHorie M, Broxmeyer HE. Involvement of immediate‐early gene expression in the synergistic effects of steel factor in combination with granulocyte‐macrophage colony‐stimulating factor or interleukin‐3 on proliferation of a human factor‐dependent cell line. J Biol Chem 1993; 268: 968 – 973.en_US
dc.identifier.citedreferenceLee Y, Gotoh A, Kwon HJ et al. Enhancement of intracellular signaling associated with hematopoietic progenitor cell survival in response to SDF‐1/CXCL12 in synergy with other cytokines. Blood 2002; 99: 4307 – 4317.en_US
dc.identifier.citedreferenceMantel C, Luo Z, Hendrie P et al. Steel factor and granulocyte‐macrophage colony stimulating factor act together to enhance choline‐lipid turnover during synergistically stimulated proliferation of the human factor dependent cell line, M07E. Biochem Biophys Res Commun 1993; 197: 978 – 984.en_US
dc.identifier.citedreferenceMiyazawa K, Hendrie PC, Kim YJ et al. Recombinant human interleukin‐9 induces protein tyrosine phosphorylation and synergizes with steel factor to stimulate proliferation of the human factor‐dependent cell line, M07e. Blood 1992; 80: 1685 – 1692.en_US
dc.identifier.citedreferenceMiyazawa K, Hendrie PC, Mantel C et al. Comparative analysis of signaling pathways between mast cell growth factor (c‐kit ligand) and granulocyte‐macrophage colony‐stimulating factor in a human factor‐dependent myeloid cell line involves phosphorylation of Raf‐1, GTPase‐activating Protein And mitogen‐activated protein kinase. Exp Hematol 1991; 19: 1110 – 1123.en_US
dc.identifier.citedreferenceMiyazawa K, Toyama K, Gotoh A et al. Ligand‐dependent polyubiquitination of c‐kit gene product: a possible mechanism of receptor down modulation in M07e cells. Blood 1994; 83: 137 – 145.en_US
dc.identifier.citedreferenceRitchie A, Gotoh A, Gaddy J et al. Thrombopoietin upregulates the promoter conformation of p53 in a proliferation‐independent manner coincident with a decreased expression of Bax: potential mechanisms for survival enhancing effects. Blood 1997; 90: 4394 – 4402.en_US
dc.identifier.citedreferencePatel MJ, Liu W, Sykes MC et al. Identification of mechanosensitive genes in osteoblasts by comparative microarray studies using the rotating wall vessel and the random positioning machine. J Cell Biochem 2007; 101: 587 – 599.en_US
dc.identifier.citedreferenceJohnson LA, Clasper S, Holt AP et al. An inflammation‐induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J Exp Med 2006; 203: 2763 – 2777.en_US
dc.identifier.citedreferenceLarson BL, Ylöstalo J, Prockop DJ. Human multipotent stromal cells undergo sharp transition from division to development in culture. Stem Cells 2008; 26: 193 – 201.en_US
dc.identifier.citedreferenceShibata T, Kokubu A, Miyamato M et al. DEK oncoprotein regulates transcriptional modifiers and sustains tumor initiation activity in high‐grade neuroendicrine carcinoma of the lung. Oncogene 2010; 29: 4671 – 81.en_US
dc.identifier.citedreferenceSansing HA, Sarkeshik A, Yates JR et al. Integrin αβ1, αvβ, α6β effectors p130Cas, Src and Talin regulate carcinoma invasion and chemoresistance. Biochem Biophys Res Commun 2011; 406: 171 – 176.en_US
dc.identifier.citedreferencevon Lindern M, Fornerod M, van Baal S et al. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia‐specific dek‐can mRNA. Mol Cell Biol 1992; 12: 1687 – 1697.en_US
dc.identifier.citedreferenceBroxmeyer HE, Kappes F, Mor‐Vaknin N et al. DEK regulates hematopoietic stem engraftment and progenitor cell proliferation. Stem Cells Dev 2012; 21: 1449 – 1454.en_US
dc.identifier.citedreferenceKoleva RI, Ficarro SB, Radomska HS et al. C/EBPα and DEK coordinately regulate myeloid differentiation. Blood 2012; 119: 4878 – 4888.en_US
dc.identifier.citedreferenceBroxmeyer HE, Hoggatt J, O'Leary HA et al. Dipeptidylpeptidase 4 negatively regulates colony‐stimulating factor activity and stress hematopoiesis. Nat Med 2012; 18: 1786 – 1796.en_US
dc.identifier.citedreferenceBroxmeyer HE, Smith FO. Cord blood hematopoietic cell transplantation. In: Applelbaum FR, Forman SJ, Negrin RS et al. eds. Thomas' Hematopoietic Cell Transplantation. 4th ed. West Sussex, UK: Wiley‐Blackwell, 2009: 559 – 576.en_US
dc.identifier.citedreferenceShaheen M, Broxmeyer, HE. The humoral regulation of hematopoiesis. In: Hoffman R, Benz EJ Jr, Shattil SJ et al, eds. Hematology: Basic Principles and Practice. Philadelphia, PA: Elsevier Churchill Livingston, 2009: 253 – 275.en_US
dc.identifier.citedreferenceChristopherson KW 2nd, Hangoc G, Broxmeyer HE. Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell‐derived factor‐1 alpha‐mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 2002; 169: 7000 – 7008.en_US
dc.identifier.citedreferenceO'Leary H, Ou X, Broxmeyer HE. The role of dipeptidylpeptidase 4 in hematopoiesis and transplantation. Curr Opin Hematopoiesis 2013; 20: 314 – 319.en_US
dc.identifier.citedreferenceOu X, O'Leary H, Broxmeyer HE. Implications of DPP4 modifications of proteins that regulate stem/Progenitors and more mature cell types. Blood. 2013 (in press).en_US
dc.identifier.citedreferenceKappes F, Waldmann T, Mathew V et al. The DEK oncoprotein is a Su(var) that is essential to heterochromatin integrity. Genes Dev 2011; 25: 673 – 678.en_US
dc.identifier.citedreferenceSaha AK, Kappes F, Mundade A. Intercellular trafficking of the nuclear oncoprotein DEK. Proc Natl Acad Sci USA. 2013 (in press).en_US
dc.identifier.citedreferenceKappes F, Damoc C, Knippers R et al. Phosphorylation by protein kinase CK2 changes the DNA binding properties of the human chromatin protein DEK. Mol Cell Biol 2004; 24: 6011 – 6020.en_US
dc.identifier.citedreferenceFaulkner NE, Hilfinger JM, Markovitz DM. Protein phosphatase 2A activates the HIV‐2 promoter through enhancer elements that include the pets site. J Biol Chem 2001; 276: 25804 – 25812.en_US
dc.identifier.citedreferenceCleary J, Sitwala KV, Khodadoust MS et al. p300/CBP‐associated factor drives DEK into interchromatin granule clusters. J Biol Chem 2005; 280: 31760 – 31767.en_US
dc.identifier.citedreferenceMor‐Vaknin N, Kappes F, Dick AE et al. DEK in the synovium of patients with juvenile idiopathic arthritis. Arthritis Rheumat 2011; 63: 556 – 567.en_US
dc.identifier.citedreferenceKappes F, Fahrer J, Khodadoust MS et al. DEK is a poly(ADP‐Ribose) acceptor in apoptosis and mediates resistance to genotoxic stress. Mol Cell Biol 2008; 28: 3245 – 3257.en_US
dc.identifier.citedreferenceFahrer J, Popp O, Malanga M et al. High affinity interaction of poly (ADP‐ribose) and the human DEK oncoprotein depends upon chain length. Biochemistry 2010; 49: 7119 – 7130.en_US
dc.identifier.citedreferenceSitwala KV, Adams K, Markovitz DM. YY1 and NF‐Y binding sites regulate the transcriptional activity of the dek and dek‐can promoter. Oncogene 2002; 21: 8862 – 8870.en_US
dc.identifier.citedreferenceCarro MS, Spiga FM, Quarto M et al. DEK expression is controlled by E2F and degraded in diverse tumor types. Cell Cycle 2006; 5: 1202 – 1207.en_US
dc.identifier.citedreferencePrivette Vinnedge LM, Ho S‐K et al. The DEK oncogene is a target of steroid hormone receptor signaling in breast cancer. Plos One 2012; 7: e46985.en_US
dc.identifier.citedreferenceBabaei‐Jadidi R, Li N, Saadeddin A. FBXW7 influences murine intestinal homeostasis and cancer, targeting, Notch, Jun, and Dek for degradation. J Exp Med 2011; 208: 295 – 312.en_US
dc.identifier.citedreferenceCheung TH, Quach NL, Charville GW et al. Maintenance of muscle stem‐cell quiescence by microRNA‐489. Nature 2012; 482: 524 – 530.en_US
dc.identifier.citedreferenceSammons M, Wan SS, Vogel NL et al. Negative regulation of the RelA/p65 transactivation function by the product of the DEK proto‐oncogene. J Biol Chem 2006; 281: 26802 – 26812.en_US
dc.identifier.citedreferenceGamble MJ, Fisher RP. SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery. Nat Struct Mol Biol 2007; 14: 548 – 555.en_US
dc.identifier.citedreferenceKappes F, Scholten I, Richter N et al. Functional domains of the ubiuitous chromatin protein DEK. Mol Cell Biol 2004; 24: 6000 – 6010.en_US
dc.identifier.citedreferenceSawatsubashi S, Murata T, Lim J et al. A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor. Genes Dev 2010; 24: 159 – 170.en_US
dc.identifier.citedreferenceShaheen M, Broxmeyer HE. Principles of cytokine signaling. In: Hoffman R, Benz EJ Jr, Silberstein LE et al., eds. Hematology: Basic Principles and Practice. 6th ed, chapter 14. Philadelphia, PA: Elsevier Churchill Livingston, 2012: 136 – 146.en_US
dc.identifier.citedreferencePrivette Vinnedge LM, McClaine R, Wagh PK et al. The human DEK oncogene stimulates β‐catenin signaling, invasion and mammosphere formation in breast cancer. Oncogene 2011; 30: 2741 – 2752.en_US
dc.identifier.citedreferenceWise‐Draper TM, Allen HV, Jones EE et al. Apoptosis inhibition by the human DEK oncoprotein involves interference with p53 functions. Mol Cell Biol 2006; 26: 7506 – 7519.en_US
dc.identifier.citedreferenceWise‐Draper TM, Allen HV, Thobe MN et al. The human DEK proto‐oncogene is a senescence inhibitor and an upregulated target of high‐risk human papillomavirus E7. J Virol 2005; 79: 14309 – 14317.en_US
dc.identifier.citedreferenceWise‐Draper TM, Mintz‐Cole RA, Morris TA et al. Overexpression of the cellular DEK protein promotes epithelial transformation in vitro and in vivo. Cancer Res 2009; 69: 1792 – 1799.en_US
dc.identifier.citedreferenceWise‐Draper TM, Morreale RJ, Morris TA et al. DEK proto‐oncogene expression interferes with the normal epithelial differentiation program. Amer J Pathol 2009; 174: 71 – 81.en_US
dc.identifier.citedreferenceKhodadoust MS, Verhaegen M, Kappes F et al. Melanoma proliferation and chemoresistance controlled by the DEK oncogene. Cancer Res 2009; 69: 6405 – 6413.en_US
dc.identifier.citedreferenceRiveiro‐Falkenbach E, Soengas MS. Control of tumorigenesis and chemoresistance by the DEK oncogene. Clin Cancer Res 2010; 16: 2932 – 2938.en_US
dc.identifier.citedreferenceKappes F, Khodadoust MS, Yu L et al. DEK expression in melanocytic lesions. Hum Pathol 2011; 42: 932 – 938.en_US
dc.identifier.citedreferencePatel RM, Walters LL, Kappes F et al. DEK expression in merkel cell carcinoma and small cell carcinoma. J Cutan Pathol 2012; 39: 753 – 757.en_US
dc.identifier.citedreferenceLiu S, Wang X, Sun F et al. DEK overexpression is correlated with the clinical features of breast cancer. Pathol Int 2012; 62: 176 – 181.en_US
dc.identifier.citedreferenceLiu K, Feng T, Liu J, et.al. Silencing of the DEK gene induces apoptosis and senescence in CaSki cervical carcinoma cells via the up‐regultaion of NF‐κB p65. Biosci Res 2012; 32: 323 – 332.en_US
dc.identifier.citedreferenceKavanaugh GM, Wise‐Draper TM, Morreale RJ et al. The human DEK oncogene regulates DNA damage response signaling and repair. Nucleic Acid Res 2011; 39: 7465 – 7476.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.